
1. Introduction

Abstract 
Land surface air temperatures are sparsely observed in situ over much of the globe.  Even in areas that are considered to be well observed, the density of instruments is usually not high enough to provide the spatial information that 
may be required for some applications (e.g. detailed characterisation of urban heat islands or heat stress during heat wave events).  We present a new, high-resolution monitoring product for Europe that will provide estimates of daily 
maximum and minimum near-surface land air temperatures in near-real-time based on a combination of remotely-sensed and in situ data.  A simple linear model is constructed that predicts air temperature from elevation and latitude, 

together with satellite-observed Land Surface ‘skin’ Temperature (LST) and vegetation fraction.  The model is trained using collocated satellite and in situ observations at ground stations, and validated using an independent subset of in 
situ observations.  The accuracy of the data set is approximately 1-3 degrees C.  Although less accurate than conventional in situ-based air temperature data sets, our data set should provide timely and detailed spatial information that 

may be used to inform decision makers to more effectively target resources during heat wave events, for example.  We present examples of this product during recent heat wave events over Europe.  We also discuss future plans to 
extend the data set into data-sparse regions, such as parts of Africa, where observations of this type should be very valuable. 
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2. Method

3. Results

4.Conclusions and Next Steps
• Land near-surface air temperatures are generally obtained from in situ stations.  Problem: point observations & geographically sparse.

• An empirical model has been developed to estimate NSATs from satellite LSTs, vegetation fraction, latitude and elevation over Europe.  

Independent in situ validation indicates the accuracy of the satellite NSATs is ~1-3ºC (comparable to satellite LSTs).

• The satellite air temperatures can be used to supplement existing station observations, providing extra coverage and fine spatial detail that 

will be useful for many applications.

• The SEVIRI field of view includes Africa, which is not well represented by existing data sets (e.g. Fig 1.1).  In the near future, we plan to 

extend this analysis to Africa.  If successful, other geostationary sensors, such as GOES and MTSAT will then be used to extend this data set 
to other data-sparse regions such as South America and parts of Asia.

Fig. 1.1 – HadGHCND maximum daily temperature 
anomaly on 28 September 2011.  HadGHCND is a 

gridded station data set (Caesar et al., 2006).  There are 
significant gaps in the data over Africa, South America, 

India and the Middle East.

In this study we use infrared (IR) satellite data to map minimum and maximum near-surface 
air temperatures (NSAT) over Europe.  IR satellite data have several advantages over station 

data.  They are capable of providing near spatially-complete fields that are representative of 

areas (‘pixels’) up to a few km in size, while station data are sometimes sparse and highly 

localised ‘point’ observations that may not be representative of the surrounding area.

Sensors in geostationary orbit can also provide diurnal coverage with observations as 
frequent as every 15 minutes.  Disadvantages include the fact that IR observations are 

restricted to cloud-free conditions, and that the sensors cannot measure surface temperature 

directly.  This latter disadvantage means that surface temperatures must be derived from the 

radiance observations, which can introduce significant errors into the data sets.  Finally, the 

satellite record is short (up to 30 years or so) compared with many station records, which 
may be a limiting factor for some applications.
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It is not possible to estimate NSAT directly from satellite radiances.  Current methods enable the 

land surface ‘skin’ temperature (LST) to be estimated from IR satellite radiances with an 

accuracy of about 1-3 ºC.  Although related to the NSAT, the LST may differ by several degrees.  
The approach adopted here is to estimate minimum and maximum NSAT from minimum and 

maximum daily LST and other parameters using an empirical multiple linear regression (Fig 2.1). 

Regression with training subset:
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Fig 2.1 - Regression model 
construction flow chart

SEVIRI

• Spinning Enhanced Visible and 

Infrared Imager (SEVIRI)

• Geostationary orbit above 0º lat, 0º

long (Platform: Meteosat)

• 12 channels (visible, near IR and IR)

• Observations every 15 minutes

• Spatial resolution 3 km at sub-satellite 

point.

The satellite data used here are from the SEVIRI; the pixel LST,

FVC, elevation and latitude data are sourced from the EUMETSAT 
Land Surface Analysis Satellite Applications Facility (LSA SAF).

The station data are SYNOP observations that have undergone 

the single-station quality control checks described by Durre et al. 
(2010).  Before the regression, the predictor variables (x) are 

standardised by subtracting the mean 

then dividing by the standard deviation. 

Bias (all = 0.0 ºC)

StdDev (all = 2.9 ºC)

Fig. 3.1 – Station validation results for 
July 2009 Tmax showing (a) mean bias  

and (b) standard deviation.
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Tab. 3.1 – Regression parameters and statistics for July 
2009.  The multiple linear correlation coefficient is 0.86.

Fig. 3.3 – (a)Tmin and (b) Tmax for 26 June 2011 (heat wave)

Fig 2.2 – The model residuals (solid line)
are Gaussian (dashed line = fit). 

Example: 
July 2009

Fig 3.2 – Fig 3.1 validation results vs latitude for GlobCover land 
types (a) Mosaic cropland (50-70%) and vegetation (grassland/ 

shrubland / forest) (20-50%) and (b) Closed (>40%) broadleaved 
deciduous forest (The Alps at ~ 47º have lower accuracy).
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Model parameters are derived on a monthly 
basis (e.g. Tab. 3.1).  LST is always the 

dominant predictor.  Evaluation with the 
independent subset of validation stations 

indicates an accuracy of ~1-3ºC (Fig. 3.1).   

However, there is some indication the 

accuracy has some geographical dependence 

(Figs. 3.1 & 3.2); separate models may be 
required for different land types or regions 

(future work).  Accuracies over mountainous 

regions are lower (e.g. Alps).
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