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IN situ and satellite data for gridded

multidecadal analyses of sea surface temperature fields

Summary

Many climate-related applications require fully interpolated ,(iveth no spatial or temporal
gaps) gridded data sets of available observations. Both the content and thiainhcef such
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products depend on the error specification for individual observations assaati the gridding

technique. Optimal approaches to the gridding procedures make theoesticahtion of full Reduced SpaCe approaCh and mOde"ﬂg Observational error

uncertainty by far more expensive to compute and much more voluminous to repatt éhead-
culation of actual gridded fields. Currently popular methods of gridding seacsudaperature
(SST) data are different for the satellite era and for the earlier pefisparse historical in situ
observations. This difference is also reflected in typical approachewxertainty representation
for the analyzed SST fields in these periods. Various heuristic approaehesreently used to
achieve a measure of coherency when combining gridded fields for such peridcssbtally
different observational coverage into a single data set. A recentlyam@lapproach combines
a large-scale low-rank component of the spatial covariance matrixitwithgh-rank component

that represents smaller scales of variability in order to produce legokition analyses and to  Observational error variance in monthly means of binned in situ obens is modeled as= ¢/, /n 1., Whereo is the physical

represent their uncertainty by an ensemble of SST fields sampled fronpdsterior distribu- variability of the SST within a given bin (estimated using satelaa), whilen,; . is a number of individual observations insit
tion, conditional on the available data. This approach is proposed as a momaaysteay to that bin.

combine SST analyses for the satellite and in situ observational periods.

In Situ Observations: ICOADS

100'000'000 ICOADS website - hosted by NOAA/ESRL/PSD
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http://icoads.noaa.gov/index fig2.html

Transition to the modern Ocean Observing System
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From Woodruff et al. [2008],
In Climate Variability and
Extremes during the Past

100 Years, Bronniman et al.
(eds.)

The solution is constrained to the subspace spanned by a few larggattalms. This “reduced space” approximation Is v
different from a more traditional kriging approach which approximates sigmariance with stationary localized correlati
structures. Solutions to least squares based objective analysexctofdp red fields can be efficiently approximated by a f
modes, have less variance than the true signal, are redder than tilsggtrtake From Bayesian perspective, the least squ
solutions represent only means of the posterior distribution:

pol(TIT°, T8, 0) = N(TOL, POYY  and € = (701701 Ty 4 pOL.
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In analyses of instrumental and satellite data, one direction of work
(Karspeck et al., 2012) is to allow non-stationary mid-scale variability
into the estimated field, on top of the large-scale “reduced space”
variability and to represent uncertainty in interpolated data products
via an “ensemble” reconstruction. These issues are currently a
subject of active research: e.g., ensemble reconstructions are used by
Kennedy et al. (2011), multivariate covariance modeling — by
R.W.Reynolds in NCDC (“two-level OI”).

Covariance structures in the mid-scale SST Early Record Modern Record
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Parameters estimated from NCEP Ol from 1981-present
via maximum likelihood
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