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1 INTRODUCTION 

1.1 Acronyms and Abbreviations 

 

AATSR  Advanced ATSR 

ARC  ATSR Reprocessing for Climate 

ATBD  Algorithm Theoretical Basis Document 

ATSR  Along-Track Scanning Radiometer  

BT   Brightness Temperature 

DINEOF   Data Interpolating Empirical Orthogonal Functions 

DISORT  Discrete Ordinates Radiative Transfer Program for a Multi-Layered 

    Plane-Parallel Medium 

GLWD  Global Lakes and Wetlands Database 

LIC  Lake Ice Concentration 

LSWT  Lake Surface Water Temperature 

LUT  Look-Up Table 

MAP  Maximum Aposteriori Probability 

MODIS  Moderate Resolution Imaging Spectroradiometer 

NEΔT  Noise Equivalent Differential Temperature 

NIR  Near Infra-Red 

NWP  Numerical Weather Prediction 

OE   Optimal Estimation 

PDF  Probability Density Function 

RFM  Reference Forward Model 

RMSD  Root-Mean-Square Deviation 

RT   Radiative Transfer 

RTM  Radiative Transfer Model 
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RTTOV  Radiative Transfer for TOVs (a fast RTM) 

SD   Standard Deviation 

SST  Sea Surface Temperature 

TCWV  Total Column Water Vapour 

TIR  Thermal Infra-Red 

ToA  Top of Atmosphere 
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1.2 Purpose and Scope 

This document is an Algorithm Theoretical Basis Document for the generation of Lake 

Surface Temperature (LSWT) and Lake Ice Concentration (LIC) products from Along-Track 

Scanning Radiometer (ATSR) imagery.  

Such products have not been adequately delivered by previous systems developed for either 

sea surface temperature or land surface temperature determination. However, there is a need 

for LSWT and LIC for many applications: numerical weather prediction is the most pressing 

application, since increasing spatial resolution and sophistication of surface-atmosphere 

interactions in weather simulations no longer permits that lakes are neglected or very crudely 

represented; other applications include climate monitoring, limnological research, and 

climate prediction for commercial and societal institutions. 

In terms of scope, this ATBD covers ATSR-1, ATSR-2 and Advanced ATSR (AATSR) 

processing.  

1.3 Algorithm Identification 

The ATBD provides the theoretical basis for the following algorithms: 

- identification of image pixel locations covering required “large lakes” (which 

are defined)  

- determination of lake-specific inputs required for radiative transfer modelling 

(the radiative transfer models are not part of the ATBD, since the algorithms 

are independent of these) 

- discrimination of cloudy and non-cloudy pixels, and of water and ice clear-sky 

pixels (“classification”) 

- estimation of LSWT, uncertainty in LSWT for clear-sky pixels 

- conversion of pixel observations to a gridded product 
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2 ALGORITHM OVERVIEWS 

2.1 Identification of lakes 
The algorithms are designed to support production of LSWT and LIC for large lakes. Large 

lakes are commonly defined as natural inland water bodies of  >500 km
2
 in surface area 

(Herdendorf (1982), Beeton (2002). In addition, the target lakes for the ARC-Lake project 

include some inland waters that are less than 500 km
2
 in area (because ARC-Lake users have 

requested these, or because there are useful validation data available).  

The lake identification algorithm determines, on the basis of the longitude and latitude of a 

pixel in the ATSR level 1b imagery, whether that pixel is geolocated over a target lake, and, 

if so, which lake is in view. This is done on the basis of a hierarchical temporally fixed lake 

mask. Being temporally fixed, ephemeral lakes are not included in the target lake list, and 

lakes undergoing dramatic hydrological changes are not properly accounted for in this 

version of the algorithm. 

2.2 Lake-specific inputs to radiative transfer modelling 
(simulation) 

The classification and retrieval algorithms discussed in §6 and §8 are based on radiative 

transfer modelling. The algorithms are generic with respect to what choice of radiative 

transfer model (RTM) is applied, so long as appropriate simulations of brightness 

temperature (BT) and visible reflectance, can be made. In addition, the jacobian (derivative of 

BT) is required with respect to prior surface temperature (x
b
)
 
and prior total column water 

vapour (w
b
); any radiative transfer model that simulates BT can provide the jacobians by 

perturbation if it does not directly output them. Thus, discussion of the RTMs as such is 

properly outside the scope of this ATBD. Likewise, the algorithms are generic with respect to 

the origin of the profiles of atmospheric temperature and water vapour that are required to run 

the RTM: the sourcing of such numerical weather prediction (NWP) fields for a given 

location and observation is a generic process for which any implementer of ARC-Lake 

algorithms will have a preferred local solution. 

However, the sourcing of the prior surface temperature, x
b
, and the lake surface emissivity, , 

are also required, and we have found that NWP-based values for these are not (at present) 

sufficiently accurate for use in ARC-Lake. Therefore, they need to be specified by an 

algorithm, presented here. The x
b
 algorithm is simple: it involves looking up pre-calculated 

data giving a spatially complete field of prior surface temperature for the period 1995 to 

2009. This ATBD is therefore focussed on documenting the basis for those look-up data. The 

emissivity algorithm involves interpolation of fresh and saline water emissivity according to 

the nature of any given lake. 
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2.3 Classification 
Valid LSWT can be estimated only for pixels that are effectively clear-sky (free of cloud). 

The algorithm for assigning a probability of clear-sky to each pixel is based on Bayes’ 

theorem (Merchant et al, 2005), and exploits the BT and visible simulations. 

The LIC value for a cell is based on the fraction of clear-sky pixels in a cell that also triggers 

an ice detection algorithm. 

2.4 Lake Surface Water Temperature retrieval 
The LSWT is estimated for each clear-sky water pixel using joint optimal estimation (OE) of 

x
b
 and w

b
 given the simulations and observations. The form of optimal estimation used is to 

return the maximum aposteriori probability (MAP) assuming Gaussian error characteristics. 

OE also gives an uncertainty estimate for each retrieval. 

2.5 Gridding 
The lake products are required on a 0.05 latitude-longitude grid, and thus a gridding 

algorithm is specified, to take the observations from the imagery resolution to the product 

resolution.
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3 IDENTIFICATION OF LAKES 
3.1 Description algorithm and justification 
A key component of the ARC-Lake processing system is the land/water mask, used to define 

the locations of lakes, and therefore locations where Lake Surface Water Temperature 

(LSWT) and Lake Ice Cover (LIC) should be derived. As we wish to treat each lake as a 

single entity, the land/water mask must also allow (A)ATSR observations to be attributed to a 

particular lake. Following assessment of existing land water masks, a new land/water mask 

was developed specifically for the lakes defined in Phase one of ARC-Lake (MacCallum and 

Merchant, 2010). Details of this development process follow. 

The Envisat ATSR land/water mask (used operationally) was compared with the 

NAVOCEANO mask (GHRSST, 2006). A summary of these two masks is given in Table 1. 

Although it does not provide full latitudinal coverage, the NAVOCEANO mask was 

preferred to the Envisat mask as it suffered fewer problems with missing or mis-located 

lakes. It also has the benefit of being at a higher resolution, allowing better representation of 

shorelines, and the potential advantage of containing information about the distance of each 

cell from the shore. Although not currently utilised, this information could be used to aid 

screening of land contaminated cells. 

Mask Resolution 

(degrees) 

Latitude 

Coverage 

Mask type Number of lakes 

with no water cells 

Envisat 0.01 [-90,90] Binary 10 

NAVOCEANO 0.00833 ~[-80,80] Distance from shore 3 

Table 1. Summary of land/water masks assessed in ARC-Lake. 

A problem shared by both the NAVOCEANO and Envisat ATSR masks is the lack of means 

by which to attribute water cells to a particular lake. Due to the irregular shapes of lakes and 

the close proximity of other water bodies (e.g. other lakes, rivers, and oceans), it is not 

possible to do this by simply selecting a regular-shaped area surrounding the location of the 

lake centre . It is also not possible to define the cells for a given lake as the group of 

connecting water cells overlying the location of the lake centre, as areas of some lakes (e.g. 

Lake Astray) are smaller than the resolution of the mask, and therefore the lakes (although 

fully connected in reality) may consist of groupings of non-connecting cells. This problem of 

correctly attributing water cells in the mask to specific lakes was tackled by incorporating a 

polygon definition of each lake. 

The Global Lakes and Wetlands Database, GLWD (Lehner and Döll, 2004), describes each 

lake as a polygon. These polygons consist of an array of longitude/latitude coordinates 
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defining the main shoreline of the lake and the shorelines of islands within the lake. Lehner 

and Döll (2004) derive these polygons from the Digital Chart of the World (DCW) of ESRI 

(1993), with manual adjustments made to define boundaries between the lakes and other 

water bodies. A new land/water mask (GLWD mask) at the NAVOCEANO resolution was 

generated from these polygons, with cells being flagged as water only if they were 

completely land free (i.e. entirely enclosed by the lake shoreline polygon and not 

intersected/contaminated by any island polygons). Unlike the Envisat and NAVOCEANO 

masks that only distinguish between land and water, the new GLWD mask distinguishes 

between individual lakes by flagging water cells with a unique lake identifier number. 

As a conservative approach, the NAVOCEANO and GLWD masks were combined to create 

the ARC-Lake land/water mask. Only cells flagged as water in both masks were defined as 

water in the new mask, giving a conservative representation of the water cells comprising 

each lake. In the special cases where the NAVOCEANO mask contained no water cells for 

the lake (e.g. Lake Hazen), the GLWD mask was used. The result of this process is a global 

(including the high latitudes) land/water mask at a grid resolution of 0.00833°, where each of 

the Phase one lakes is represented by a unique number.  

3.2 Practical considerations 
The lakes covered Phase one of ARC-Lake, and indeed all lakes, only cover a small fraction 

of the Earth’s surface. Therefore compression techniques are applied to reduce the memory 

storage requirements of the mask. The mask is stored in a hierarchical data structure, with 

three levels of increasing resolution as detailed in Table 2. By storing only the full resolution 

mask for 0.1° resolution cells that contain lakes, the hierarchical data structure greatly 

reduces the storage requirements for this mask. The land/water mask is available in NetCDF 

format from an online data repository (MacCallum and Merchant, 2011c). 

Level Resolution Dimensions Details 

1 1.0° x 1.0° [360, 180] 0 - No lake data 

> 0 - Index (n) of 2nd dimension of Level 2 

(indexing starts at 1, i.e. F90 standard) 

Number of non-zero elements = N = size of 2nd 

dimension of Level 2 

2 0.1° x 0.1° [100, N] 0 - No lake data 

> 0 - Index (m) of 2nd dimension of Level 3 

(indexing starts at 1, i.e. F90 standard) 

Number of non-zero elements = M = size of 2nd 

dimension of Level 3 
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3 0.01° x 0.01° [100, M] 0 - No lake data 

> 0 - ARC-Lake index number for lake 

Table 2. Structure of hierarchical land/water mask developed for ARC-Lake. 

3.3 Assumptions and limitations 
The new land/water mask outlined in §3.2 is generated only for the lakes defined in Phase 

one of the ARC-Lake project (MacCallum and Merchant, 2010). This set of target lakes 

contains water bodies broadly described as permanent, natural water bodies with surface area 

> 500 km
2
, with a number of exclusions and additions (MacCallum and Merchant, 2010). 

One such exclusion is lakes with highly variable surface area (> 25%). Such lakes are not 

included to avoid the issue of LSWT retrievals being performed over land when the lakes 

recede. There are however still lakes where lesser (or undocumented) variations in surface 

area occur. Therefore it should be noted that land contamination may still be an issue around 

lake edges. 

There are also two lakes (the Aral Sea and Kara-Bogaz-Gol) where significant changes to the 

surface area have occurred over the lifetime of the ATSR missions, rather than seasonally. In 

these cases, the land/water mask represents the lake extent at a snap-shot in time, so therefore 

does not accurately represent the lake area throughout the ATSR mission lifetime. 

Consequently, LSWT products for these lakes should be used with caution.  

The problem of variations in lake surface area is one that must be addressed in future. A 

water detection algorithm based on visible reflectance channel observations is proposed, and 

will be trialled in Phase 3 of the ARC-Lake project (months 27 to 36) in the context of 

extending the range target lakes within the project to smaller inland water bodies.  
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4 LAKE-SPECIFIC PRIOR SURFACE 
TEMPERATURE 

The prior surface temperature is a key component of the optimal estimation (OE) LSWT 

retrieval scheme implemented in ARC-Lake. NWP-based values, as used in sea surface 

temperature (SST) retrievals, are not (at present) adequate for use in ARC-Lake. The reasons 

for this are two-fold: the NWP-based values are not accurate enough and their spatial 

resolution too coarse to provide information of spatial thermal structures on lake-scales. This 

is particularly apparent for smaller or less well monitored lakes. It is therefore necessary to 

specify the prior surface temperature by other means. These means take the form of an 

iterative scheme, using the ARC-Lake LSWT product to generate a spatially and temporally 

complete field of surface temperatures by means of principal component reconstruction, that 

are then used as the input field for the next run of the ARC-Lake processor. 

4.1 Initialization with MODIS Climatology 
In many instances (e.g., for ECMWF and Met Office), NWP surface temperature over lakes 

is provided by prescribing a monthly climatology value, for example, based on nearby sea 

surface temperatures (Saunders and Basalmo, personal communications). As NWP-based 

values are therefore insufficiently accurate and at a resolution too coarse for ARC-Lake 

LSWT retrievals over many lakes an alternative initial prior temperature field was sought. 

This was necessary in order to limit the number of potentially valid observations flagged as 

cloud because of very large differences between the prior and the retrieval. SST and land 

surface temperature (LandST) retrievals from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) were deemed to be a potentially suitable alternative to NWP, as 

they have been applied with some success to lakes from 2000 to present (Oesch et al, 2005, 

Reinart and Reinhold, 2008, and Wan et al, 2008) and are available at a finer resolution than 

NWP data (~
1
/20° compared to ~1.0°).  

Although monthly temporal resolution may result in the loss of information about short-lived 

thermal fronts, it was both feasible to achieve this and was deemed adequate for the creation 

of prior LSWT fields for the first iteration. Monthly climatology from MODIS SST products 

(which operate over all identified water bodies) were used, with MODIS LandST products 

being used for lakes where SST products were unavailable (because the MODIS SST 

algorithm had not been applied), in order to maximise the coverage of the target lakes.  

Terra MODIS SST (11 µm day-time and night time) monthly climatology products, at 
1
/24° 

longitude/latitude resolution, were obtained from http:/oceancolor.gsfc.nasa.gov (MODIS, 

2010). Equivalent climatology products were not available for MODIS LandST, so these 

were generated from monthly average files (MOD11C3) downloaded from 

https://lpdaac.usgs.gov (Wan, 2007). MODIS LandST products are on 
1
/20° longitude/latitude 

resolution.  

https://lpdaac.usgs.gov/
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A global MODIS Lake Surface Water Temperature (LSWT) climatology at 
1
/8° resolution 

was created, as a composite of the SST and LandST products, using the ARC-Lake 

land/water mask (MacCallum and Merchant, 2010) to define lake cells. Data were not 

available in all temperature products (SST/LandST, day/night) for all lake cells and in some 

cases data was unavailable in all products. Where available, MODIS day-time SST was used. 

If these data were not present, the MODIS night time SST product was used. If no SST data 

were present for a given lake, a lake-area-average LandST value was used, with preference to 

the day-time product if available. As fine resolution spatial features such as thermal fronts 

may persist for shorter timescales than this climatology, there is some redundancy in using 

the MODIS products at their full resolution at this stage. Therefore, the MODIS products 

were spatially averaged to a 
1
/8° resolution grid to further maximise spatial coverage and 

reduce processing time. 

Interpolation from surrounding LSWTs is used to fill lake cells or lakes that have missing 

data. This interpolation stage is performed in the ARC-Lake processing code to provide a 

spatially complete input field. Linear interpolation between monthly time steps is used to 

determine the prior LSWT field for a given day of the year.  

4.2 Iterative Scheme for Generating Prior Surface Temperature for 
ARC-Lake 

The climatology for each lake developed from MODIS is useful for providing a reasonable 

prior for some of the smaller lakes, but does not provide the temporal and spatial resolution 

necessary to correctly represent the how lake temperatures vary in time and in space across a 

given lake. Nor does it capture any inter-annual variability, of course. It was therefore 

adequate for an initial run of the ARC-Lake processor, but is not capable of giving best 

results. A better prior (with adequate temporal and spatial resolution, and with inter-annual 

variability present where possible) was therefore developed by an iterative approach as 

described in this section.  

The climatology derived from MODIS was used as input to the ARC-Lake processor, and 

some valid observations of LSWT were obtained. A prior LSWT field of the spatial and 

temporal resolution necessary for an improved result was then achieved by applying data-

interpolating principal component techniques (Alvera-Azcárate, 2005) to these satellite 

observations of LSWT. This allows gaps in the LSWT data, arising from cloud cover and 

incomplete lake coverage in the instrument swath, to be filled in space, thereby providing 

complete spatial coverage on each day of observation. These fields were then linearly 

interpolated in time to yield a spatially complete LSWT time series for every day of the year 

during the ATSR2 and AATSR missions (in most cases – see below). Since the interpolation 

process creates fields with errors that are uncorrelated or very weakly correlated to LSWT 

retrieval errors, the complete time series may be fed back into the retrieval scheme as a prior 

LSWT, and the process repeated, with improved results, particularly in terms of cloud 
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detection. Figure 1 illustrates this iterative process, the components of which are described in 

the following sections. 

There are three key components to this iterative processing scheme: the ARC-Lake processor 

for LSWT, software for reconstructing a spatially complete LSWT field from the ARC-Lake 

output using empirical orthogonal function (EOF)-based techniques, and a lake model. The 

ARC-Lake processor is described in this document and the references herein. The EOF 

decomposition based reconstructions of the spatially incomplete output from the ARC-Lake 

processor are generated using the software package, DINEOF (Data Interpolating Empirical 

Orthogonal Functions). This software, described in detail by Alvera-Azcárate (2005), allows 

missing data points (e.g. clouds and areas not under the instrument swath) in the ARC-Lake 

LSWT product to be calculated from an optimal number of EOFs determined using a cross-

validation technique. Finally, output from the lake model, FLake (Mironov, 2005) is used for 

cases where the number of valid observations from ARC-Lake is extremely low and/or the 

EOF reconstruction is poor. It is also used to enhance the representation of frozen periods, 

which may suffer from problems of extensive cloud cover and of surface ice being flagged as 

cloud by the ARC-Lake processor. The simplified online version of FLake is used 

(http://www.flake.igb-berlin.de/) which provides an approximation to a climatic mean 

temperature cycle. It is beyond the scope of this document to explain the workings of 

DINEOF or Flake in further detail and the user is directed to the references given. The 

iterative processing scheme for generating and using the prior LSWT field is outlined in 

Figure 1 and described below.  

Per-lake output products (as described in MacCallum and Merchant, 2011a) from the ARC-

Lake processor are the starting point for the process that ultimately creates a global prior 

LSWT fields at daily resolution that are then used as input to the ARC-Lake processor in the 

next iteration (except for the first pass, where the climatology based on MODIS observations 

was used). Cloud cover and orbit tracks prevent the ARC-Lake LSWT product providing 

spatially complete observations over each lake at every opportunity. Alvera-Azcárate (2005) 

demonstrate that these data gaps can be filled using EOF-based reconstructions. Before 

running DINEOF a number of preprocessing steps are required to remove erroneous 

observations that may adversely affect the reconstructions, and to ensure that there are 

adequate observations to perform the reconstruction. 

Erroneous outliers in the input LSWT field (e.g. from land contamination) can result in 

unrealistic features being propagated through the reconstruction. To eradicate this problem, 

the input LSWT data are filtered by their χ
2
 value (the OE retrieval cost), with all points with 

χ
2
 > 100 flagged as missing data.  

During periods where temperatures are approach freezing or are frozen, long periods with no 

valid LSWT observations or detected ice cover occur over some lakes. To avoid unrealistic 

temperatures over these periods, missing data points are replaced by FLake simulations in the 
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reconstructed/interpolated time series. As the FLake simulations approximate to a climatic 

mean over the entire lake, they do not capture seasonal or spatial variations in ice cover. 

Consequently, a more conservative estimate of the frozen period is taken to avoid unrealistic 

switches between frozen and unfrozen conditions across the lake and in the reconstructed 

time series. The conservative estimate of the frozen period adopted is the central 60% of the 

frozen period simulated in FLake. All potential (but cloud or ice covered) observations 

during this period are replaced with the value 273.15 K. 

The methodology above is updated for the prior LSWT for v2.0. Following the updates made 

to the ice detection algorithm in v1.1 (to reduce the possibility of thin cirrus being flagged as 

ice) the LIC product is integrated into prior LSWT field for v2.0. All cells containing ice 

observations but no valid LSWT observations are replaced with the value 273.15 K prior to 

the substitution of FLake simulations. This provides improved representation of ice cover and 

LSWT during freeze/thaw periods and reduces the influence of FLake simulations on the 

prior LSWT field. Note that ice detection is only performed during the day (§7), as it uses 

visible channel observations. To avoid losing the benefits of the ice observations in the night-

time reconstructions, day-time ice observations are substituted into the night-time LSWT 

observations (as above), only days where there is both a day and night-time observation.   

Alvera-Azcárate (2005) demonstrate that EOF-based reconstructions perform best when each 

temporal slice of data (each day) has valid data for at least 5% of the potential points. A filter 

is applied to the data based on this criterion. Following this, a check is made on the number 

of remaining time-steps of data relative to the total number of potential observation days. If 

more than 15% of the time-steps have valid observations the algorithm proceeds with this 

data. However, if there are fewer time steps than this, a daily climatology for an average year 

is constructed from all the available data, and this single year time series used as input to 

DINEOF. It should be noted that days where FLake simulations have been substituted in are 

excluded from this filtering stage.  

A spatially complete time series (covering observation days only) is then generated using 

DINEOF (Alvera-Azcárate, 2005). This is used to further filter the original input LSWT field 

to remove remaining outliers. Observation-reconstruction differences are calculated for all 

valid observations. Where this difference is greater than 2.5 times the standard deviation over 

all differences, the LSWT observation is replaced with the reconstructed temperature. 

Following the second stage of filtering a second reconstruction is generated using DINEOF. 

This reconstruction is then linearly interpolated in time to provide a spatially and temporally 

complete time series of LSWT for each lake. Lake cells with no valid observations result in 

missing data in the reconstruction. Such cells are replaced by the median of the surrounding 

cells, where the size of the median filter applied is variable, to ensure a minimum of 5 cells 

are used. Occasional unrealistic spatial and temporal variations in temperature may still be 



 

 

The University of Edinburgh 

 

  

ATSR Reprocessing for Climate 

Lake Surface Water Temperature –  

ARC-Lake 

 

Document Ref: 

ARC-Lake-ATBD-v1.3 

Issue: 1 

Date: 23 Oct 2013 

 

 

20 

 

present in the reconstructions. These are removed by applying median filters in space (as 

above) and in time (with a width of 15 to ensure ~5 observations are used). 

Manual checks are performed at this stage: comparing the time series of lake-mean 

reconstructed LSWTs with the lake-mean observation. The purpose of these checks is to 

determine whether the reconstruction is realistic or whether the FLake simulation is a more 

suitable prior. FLake simulations are used as a last resort for cases where the reconstructions 

are in poor agreement with observations, typically cases where the observations are 

extremely sparse. Where DINEOF reconstructions are of good quality, day and night time 

reconstructions are averaged to provide a single time series for each instrument. Only a single 

reconstruction is used if only one of the day/night pair is of suitable quality,  

Reconstructions for all the Phase one lakes are then merged to create daily files with global 

coverage at a resolution of 
1
/20°. An estimate of the error in the prior LSWT field is also 

required. For lakes where FLake is used as the prior, the error (SD) is assigned to 2.0 K. For 

lakes where the DINEOF reconstruction is used, the error estimate is taken from the 

comparison of the prior from the previous iteration with in situ observations in the MD 

(MacCallum and Merchant, 2010). These daily global files of reconstructed and modelled 

LSWTs with associated error estimates are then used as the prior LSWT field in the next run 

of the ARC-Lake processor and the process, as outlined above and in Figure 1, repeats 

iteratively.  As illustrated in Figure 1 the full time series of observations for each instrument 

is used as input to the iterative scheme.  

A modified approach is used for ATSR-1 and additional AATSR observations (e.g. 2010 and 

2011). For efficiency, we use the ATSR-2/AATSR climatology from v1.1 products (rather 

than MODIS climatology) as the initial prior LSWT, with a fixed error estimate of 2 K. 

Following this initialisation run, one further iteration of the processing scheme (Figure 1) is 

performed to generate the v2.0 data products for ATSR-1 and 2010-2011 (AATSR). Two 

further modifications are made to the ATSR-1 processing. Firstly, no visible channels are 

available on ATSR-1 and therefore no ice cover observations (§7) are possible during the day 

or night. To reduce dependence on FLake simulations, we substitute in frozen periods based 

on ATSR-2/AATSR climatology before generating the reconstructions. This is done by 

replacing potential but missing observations with value 273.15 for cells/dates where the 

ATSR-2/AATSR climatology is < 273.4 K (the additional 0.25 K is to accommodate 

deviations from frozen that can occur in the reconstructions). Secondly, for lakes where a 

lack of ATSR-1 observations prevents the generation of a full time-series reconstruction the 

ATSR-2/AATSR climatology is used, as this generally provides a more realistic 

representation of the seasonal cycle.  
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Figure 1. Flow-chart describing iterative processed used to generate high resolution prior LSWT field. 
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4.3 Sources of prior and availability of reconstructed time series 
As outlined in §4.2, the final time series of LSWT used as input in the ARC-Lake processor 

come from one of three possible sources (in order from most to least preferred): DINOEF 

reconstructions of the full instrument time series, DINEOF reconstructions of daily 

climatology, or FLake simulations. With each iteration it is found that the number of lakes 

where the prior comes from the more preferred sources increases. In generating the version 

1.0 release of ARC-Lake, two iterations were undertaken. A third iteration was performed in 

generating the version 1.1 release of ARC-Lake products. A fourth iteration was performed in 

generating the v2.0 ARC-Lake products. The number of lakes where the prior LSWT came 

from each of these sources (and combinations of them) for versions 1.0, 1.1 and 2.0 is given 

in Table 3. A detailed breakdown of the version 2.0 data in Table 3 is given in Table 4 in §13. 

Version Instrument Reconstructed 

time series 

Reconstructed 

climatology 

Mix of 

reconstructions 

FLake 

1.0 ATSR2 81 135 22 25 

AATSR 112 112 17 22 

1.1 ATSR2 126 97 28 12 

AATSR 160 73 16 14 

2.0 ATSR1 112 113 34 4 

ATSR2 174 27 57 5 

AATSR 183 16 60 4 

Table 3. Sources of data for prior LSWT field. 

 

4.4 Implementation of high resolution prior surface temperature 
field 

The OE retrieval scheme requires the input of prior meteorological fields and forward 

modelling based on these fields. As atmospheric fields are smooth compared to the spatial 

scales of LSWT variation, it is not necessary to perform the forward modelling at every 

satellite pixel or grid cell of a high resolution prior. Instead, forward modelling is carried out 

at ATSR tie-points (resolution ~ 0.225°), using the distance weighted average of the four 

nearest neighbours from the high resolution LSWT prior. Due to computational limitations 

this transform to ATSR tie-points is performed on a reduced resolution (0.1°) version of the 

prior (generated from the 0.05° reconstruction). The full resolution (0.05°) prior is later 
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combined with the forward model output at tie-points to estimate the prior BTs at the higher 

resolution. This is achieved by bilinear interpolation of the quantity  

   
aresh ia

xx
x

y
x 







F   

which is then used as the forward model value for pixels corresponding to xhi-res rather than 

 
a

xF . Here: a
x is the prior LSWT on tie-points, reshi

x
   is the high resolution LSWT 

prior, 
x

y




is the tangent linear of BTs with respect to surface temperature, and  

a
xF  

represents the forward modelled BTs for the state vector at the tie-points. 
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5 LAKE-SPECIFIC EMISSIVITY 
Values of the infrared emissivity of water surfaces are another important component of the 

forward model, and require a spectral emissivity model to calculate them. Such a model must 

account for the emissivity variations associated with wavelength, view angle, wind speed, 

water temperature and, for the case of lake surfaces, salinity. A suitable emissivity model for 

ocean surfaces (neglecting salinity variations) is described by Embury et al. (2010), and is the 

basis of the lake-specific emissivity model used in ARC-Lake.  

Embury et al. (2010) model the emissivity at any view angle using the following methods. 

They assume the water surface consisting of plane facets with a wind speed dependent slope 

distribution, calculate Fresnel reflection coefficients for each facet, and obtain the sum of 

their contributions (Masuda et al, 1988 and Masuda, 2006). In addition to the direct emission, 

Embury et al. (2010) also include a contribution from emitted radiation that has been 

reflected by the surface into the view angle (Watts et al. 1996, Wu and Smith 1997).  

The isotropic Gaussian version of the clean surface slope distribution measured/modelled by 

Cox and Munk (1954) provides an appropriate description of the sea slope distribution (i.e., 

wind azimuth angle need not be considered). This distribution also provides an estimate of 

the background mean squared slope due to swell. 

In order to avoid significant errors in simulated BTs the emissivity model must account for 

the temperature dependence of emissivity (Newman et al. 2005). This may be achieved 

through the use of temperature dependent values of refractive indices of water (pure and sea 

water). The refractive indices of Newman et al (2005) are recommended for the frequency 

range 760-1230 cm
-1

, and those of Downing et al (1975) elsewhere. Suitable treatment of the 

temperature dependence of the refractive indices is given by Newman et al (2005) for the 

range 760-1230 cm
-1

, and by Pinkley et al (1977) for other spectral regions. Temperature and 

salinity dependences may be assumed independent, and may be combined to calculate 

refractive indices for sea water (using a fixed standard value of 35 PSU) at different 

temperatures.  

Embury et al.’s results are available at Filipiak (2008)  

For the lake-specific emissivity model, refractive indices are also calculated for pure water 

and double sea water salinity (70 PSU) using the treatments of salinity dependence given by 

Pinkley and Williams (1976).  

It is not necessary for the emissivity model to include the effect of surface foam, which will 

affect the emissivity at higher wind speeds. The effect of foam on the emissivity is likely to 

be smaller than the maximum effect proposed in Watts et al (1996), demonstrated by 

Salisbury et al (1993) who show emissivity is unaffected by foam in the 8-14 µm region. In 
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addition, the temperature of the foam may not match the skin temperature (Marmorino, 

2005). 

In the ARC-Lake processor, a salinity is associated with each lake ID. The forward model 

simulations then use an emissivity appropriate to that salinity obtained by linear interpolation 

of the emissivity for salinities of 0, 35, 70 PSU. This dependence upon salinity was 

introduced in ARC-Lake v1.1 data products (v1.0 products used a fixed salinity of 35 PSU 

for all lakes).  

Limitations of this approach are as follows: 

 The facet slope distribution with respect to wind speed used for emissivity 

calculations is appropriate to open ocean, and may not represent well situations of 

short fetch from lake shores. 

 The relationship between NWP wind speed and local winds over a lake is likely to be 

less accurate than for the open ocean (because of topographical effects). 

 A few lakes have salinity that varies spatially or in time to a significant degree, these 

variations not being represented by the single value used in the ARC-Lake processor. 
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6 BAYESIAN CLEAR-SKY PROBABILITY 
The following sections describe the general principles of Bayesian probability theory and 

their application to cloud detection. It should be noted that all predefined probability density 

function look-up tables describing the distributions of cloudy radiances used in the ARC-

Lake processing at present have been developed for SST observations rather than LSWT 

observations. To the degree that cloudy radiance distributions vary between land and sea, this 

gives scope for further improvement. Equivalent look-up tables based on ARC-Lake LSWT 

observations may be developed in the future, but this is not reckoned to be a priority, since 

cloud regimes vary significantly over the ocean in any case. 

6.1 Bayesian Probability Theory 
The problem being addressed is:  

To deduce the likelihood of an image pixel being cloud-free given the radiance values 

from various thermal and reflectance channels for the pixel (and perhaps for other pixels 

in the image).   

The radiance information can be supplemented with prior (background) knowledge. From the 

time and geographical location of the observations, climatological and/or NWP forecast 

values of surface temperature and atmospheric state can be specified. The addition of 

background information allows Bayesian statistics to be used to solve the problem posed.   

Bayes’ theorem for the probability of clear sky, c, given the observations, 
o

y , and the 

background knowledge, b
x , amounts to:   

Eq. 6.1    
     

   bbo

bbo

bo

PP

cPcPcP
cP

xxy

xxy
xy

|

|,|
,|     

where each P represents a probability or probability density function as specified in its 

argument; c is the state of clear-sky clear-ocean; y is the observation vector; x is the state 

vector; superscript o indicates observed and superscript b indicates background (i.e., prior 

knowledge). The definition of the elements of the observation vector and background state 

will vary according to the sensor and forward model respectively. 

For imagers used in meteorology, the clear-sky probability varies on length scales down to 

the pixel dimensions (~1 km). This is much finer than the length scales of variation in the 

atmospheric terms (other than cloudiness) in the background state (~100 km). To a good 

approximation on pixel-to-pixel scales, the background state is independent of clear-sky 

probability, that is  cP
b

|x =  b
P x , simplifying Eq. 6.1 to  

Eq. 6.2    
   

 bo

bo

bo

P

cPcP
cP

xy

xy
xy

|

,|
,|    
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The term  bo
P xy |  describes the probability density function of the observations given the 

background state.  We may decompose this probability density function into the contribution 

from clear and cloudy conditions, i.e. 

Eq. 6.3            cPcPcPcPP
bobobo
,|,|| xyxyxy    

where an over-bar signifies the logical not condition, and    cPcP  1  by definition.  

Substituting into Eq. 6.2 and rearranging gives the final form used to estimate the clear-sky 

probability: 

Eq. 6.4    
   
   

1

,|

,|
1,|














cPcP

cPcP
cP

bo

bo

bo

xy

xy
xy   

Given a prior estimate of  cP , evaluating the clear-sky probability in the light of the 

observations amounts to finding the probability density for the observations given the 

background state for both clear and cloudy conditions, and then using these values to evaluate 

Eq. 6.4 

6.2 Probability density functions – clear-sky 
6.2.1 Definitions 

 cP
bo

,| xy  is the probability of the observations given the background fields and assuming 

clear-sky. The observation vector, y
o
, consists of spectral and textural components. These are 

the channel brightness temperatures (or reflectances) and the local standard deviations of 

these, denoted by 
o

s
y and 

o

t
y respectively. It will be assumed that the local standard deviation 

PDFs are independent of the brightness temperatures (and reflectances), therefore for the 

clear probability: 

Eq. 6.1       cPcPcP
bo

t

bo

s

bo
,|,|,| xyxyxy   

Using night-time AATSR retrievals as an example, the spectral component, 
o

s
y , is composed 

of the brightness temperatures at 3.7 m, 11 m, and 12 m, denoted by 
1

y , 
2

y , and 3
y . For 

the textural component, only the local standard deviation of the 11 m brightness temperature 

is used, denoted by 
4

y . Eq. 6.1 can therefore be written as: 

Eq. 6.2      cyPc

y

y

y

PcP
bbbo

,|,|,|
4

3

2

1

xxxy 









































   

For day-time AATSR retrievals, the 3.7 m channel is replaced with the 1.6 m channel, to 

avoid problems with solar contamination.  
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6.2.2 Definitions  
If it is assumed that the errors in the observed and background brightness temperatures have a 

Gaussian distribution, then the joint probability density function is given by: 

Eq. 6.3   
  

2
1

||

exp
,|

1

2
1





 SKKS2

ySKKSy
xy

T








T

a

T

abo

s
cP  

which for the AATSR example can be written as:  

Eq. 6.4  
  

2
1

||

exp
,|

1

2
1

3

2

1





 SKKS2

ySKKSy
x

T












































 

T

a

T

ab
c

y

y

y

P   

If the clear-sky probability density evaluates to less than 10
-15

 K
-2

, it is set to 10
-15

 K
-2

. In 

conjunction with a minimum of 10
-10

 K
-2

 imposed on the cloudy probability density function, 

this means that any outlying/aberrant BTs are flagged as not clear, while avoiding dividing by 

zero. 

The vector and matrix terms in Eq. 6.3 are defined as follows: 

(i) y  is the difference vector for the observed and background brightness temperatures, 

defined for the ith element as   b

i

b

i
Fy x  . 

 (ii) 
T

a
KKS  is the error covariance in the background observation vector resulting from the 

propagation of the background variable errors through the FFM. 

K  is the tangent linear of the forward model defined as: 

b

b

s

x

y
K




  

For the example of AATSR, K  can be written as:  

 































































bb

bb

bb

TCWV

T

SST

T

TCWV

T

SST

T

TCWV

T

SST

T

1212

1111

9.39.3

K   

a
S  is the background covariance matrix defined as   
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 

  














2

2

0

0

b

TCWV

b

SST

a




S   

where 
b

SST
  and 

b

TCWV
  are the errors in the background state variables. 

(iii)


S  is the total covariance in the difference between the background and actual 

observation vectors in the absence of background variable error. This is the sum of the 

RTM model covariance and the covariance in the observed values. The examples below 

illustrate the three-channel case (e.g. AATSR night-time retrievals, where i = 3.7 µm, j = 

11 µm, and k = 12 µm), and are readily generalized to other configurations. 

       

       

        
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
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






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





S  

where r is the correlation coefficient of RTM error between the two channels. By default, 

the errors in the modelled brightness temperatures are assumed to be uncorrelated, i.e., r
2
 

= 0 (which needs further assessment).    

The other variance component for the observed brightness temperatures is due to 

radiometric noise, which is assumed to be uncorrelated between TIR channels, therefore 

the covariance matrix for the observed parameters is: 

 

 

  























2

2

2

00

00

00

o

k

o

j

o

i

o







S  

The sum of the covariances in the RTM model and observed values gives the total 

covariance matrix:  

Eq. 6.5   
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NOTE: The example for AATSR night-time pixels can be easily modified to perform 

cloud screening for day-time pixels. For the day-time case, the 3.7 µm channel is replaced 

by the near-infrared channel, giving i = 1.6 µm in Eq. 6.5. Again, r
2
 = 0 is appropriate, 

since the forward models are independent. 
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6.2.3 LSD Distributions 
The texture measure used in ARC-Lake is local standard deviation (LSD) and has a non-

Gaussian distribution, for both clear and cloudy scenes. A satisfactory analytical solution has 

not been found, and PDFs for the textural component are derived empirically from pre-

screened observations over oceans. Since the spatial distribution of thermal features and 

gradients in lakes can be different over lakes (typically, less uniformity than the ocean), 

creation of a PDF specific to inland waters will be considered in future. The distribution of 

local standard deviation for clear-sky cases also depends on radiometric noise. Lower channel 

noise requires a higher bin resolution to accurately represent the peak in the PDF. The low-

noise (NEDT ~0.04 K) 1 km resolution ATSR2/AATSR are used to create the pdfs 

empirically. A 1-D textural PDF for the 11 µm channel is used for ATSR-2 and AATSR 

night-time (Figure 2) and day-time retrievals.  

 

Figure 2. Clear-sky 11 µm textural PDF for night-time AATSR.  

6.3 Probability density functions – cloudy-sky 
6.3.1 Definitions 

 cP
bo

,| xy  is the probability of the observations given the background fields and assuming 

cloudy-sky (the condition ‘not clear-sky’ is more correct as this condition could also result 

from extreme aerosol loading or clear-sky over ice). As with the clear-sky probabilities, it 

will be assumed that the local standard deviation PDFs are independent of the brightness 

temperatures (and reflectances), therefore for the cloudy probability 

Eq. 6.6.      cPcPcP
bo

t

bo

s

bo
,|,|,| xyxyxy   

For the AATSR example (as introduced in §6.2.1), Eq. 6.6 can be written as:  
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Eq. 6.7     cyPc
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6.3.2 Joint BT Distributions 

The joint probability density function  cP
bo

s
,| xy  will have no analytic form and must be 

inferred from empirical observations or numerical modelling and then tabulated. 

The approach taken in the ARC-Lake processor is to define  cP
bo

s
,| xy  as a function of only 

one variable in the background state, x
b
, namely, the prior surface temperature. The 

tabulations have been defined within the ARC SST project for cloud radiances associated 

with different bands of prior SST, and are assumed to apply similarly for different LSWTs. 

The global joint probability density function (hereafter, ‘P-cloud’), derived empirically from 

satellite imagery or numerical modelling, is represented by an N-dimensional look-up table 

(LUT), where N is the number of channels used (and must match the number of channels 

used to define the clear scene PDF, §6.2). Appropriate bin widths must be chosen so as to 

give as smooth a representation of the PDF as possible given the number of data points. The 

PDFs must also be correctly normalized so that their units match the analytical PDF for 

 cP
bo

s
,| xy . It is also necessary to define a minimum allowed value for elements of all 

PDFs, with any values less than this reset to the minimum. In ARC-Lake, the LUTs for ‘P-

cloud’ derived from the ARC SST project is used. 

For the AATSR example (§6.2.1), P-cloud is taken from cloud-screened ocean imagery of 

AATSR. The P-cloud is defined as the fraction of known cloudy-pixel BTs occurring in each 

bin of size 2 K along the dimension T11-SST and of size (0.2 K)
2
 in the area defined by axes 

{T11–T12 , T3.7 – T11}. The occurrences counted are those flagged cloudy in the ARC SST 

mask from all AATSR night-time images from all latitudes and seasons, giving a huge 

number of observations from which to deduce a smooth LUT. P-cloud was determined for 

nadir and forward views separately and as a function of prior SST. As a method of 

compression, the P-cloud LUTs are stored in terms of temperature differences (e,g, 3.7 µm - 

11 µm, 11 µm - 12 µm, and 11 µm – SST for the AATSR night-time example).  

Slices of the P-cloud LUT for the AATSR example are shown in Figure 3 for the nadir view 

and a prior SST or LSWT of 280.0-282.5 K. The full night-time LUT is an array of 

dimensions [2,14,80,50,15] corresponding to dimensions of: satellite zenith angle, prior SST, 

3.7 µm - 11 µm, 11 µm - 12 µm, and 11 µm – SST. Bin sizes for these dimensions are: 30°, 

2.5 K, 0.2, K, 0.2 K, and 2 K. Ranges vary for dimensions representing temperature 

differences, while the SST dimension covers from 270.0 K to 305.0 K. The minimum is not 

zero, but is set to 10
-10

 K
2
. This is to avoid geophysically implausible values of BT being 

given zero probability of there being cloud: the minimum of the clear-sky probability density 
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function is set to 10
-15

 K
2
, and so BT outliers will be flagged as ‘not clear’, as one would 

wish. 

  

 

 

Figure 3. Examples of slices of the night-time cloudy-sky spectral PDF LUT for AATSR. All figures illustrate 

the LUT used for the nadir view for a prior LSWT range of 280.0 K to 282.5 K. (a) 11 µm - SST vs 11 µm – 12 

µm for 3.7 µm – 11 µm differences of 2.0 K to 2.2 K. (b) 11 µm - SST vs 3.7 µm – 11 µm for 11 µm – 12 µm 

differences of 4.0 K to 4.2 K. . (c) 11 µm – 12 µm vs 3.7 µm – 11 µm for 11 µm – SST differences of -6.0 K to -

4.0 K.  

For the day-time AATSR example, P-cloud is determined for the dual-view configuration 

rather than for each view separately as in the night-time case. This dual-view method is only 

possible for day-time retrievals as the reduced TIR channel set enables a manageable-sized 

LUT to be defined. As for night-time retrievals, P-cloud is determined as a function of prior 

SST and the LUTs are stored in terms of temperature differences. The full day-time LUT is 

(a) (b) 

(c) 
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an array of dimensions [14, 15, 20, 20, 20] corresponding to: prior SST, 11 µm nadir – SST, 

11 µm nadir - 12 µm nadir, 11 µm forward - 12 µm forward, 11 µm nadir – 11 µm forward. 

Bin sizes for these dimensions are: 2.5 K, 2.0 K, 0.4 K, 0.4, K, and 0.4 K. P-cloud for the 

AATSR day –time example is shown in Figure 4 for a prior SST of 280.0 K to 282.5 K. 

 

  

 

 

Figure 4. Examples of slices of the day-time cloudy-sky spectral PDF LUT for AATSR. All figures are 

illustrative for a prior SST range of 280.0 K to 282.5 K and 11 µm – SST differences of -6.0 K to -4.0 K. (a) 11 

µm nadir – 11 µm forward vs 11 µm nadir – 12 µm nadir for 11 µm forward – 12 µm forward differences of 3.0 

K to 3.4 K. (b) 11 µm nadir – 11 µm forward vs 11 µm forward – 12 µm forward for 11 µm nadir – 12 µm nadir 

differences of 3.0 K to 3.4 K. (c) 11 µm forward – 12 µm forward vs 11 µm nadir – 12 µm nadir for 11 µm 

nadir – 11 µm forward differences of 3.0 K to 3.4 K. 

(c) 

(a) (b) 
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It is assumed that the near infra-red (NIR) reflectance (1.6 m) is uncorrelated with the TIR 

BTs (11 m and 12 m for AATSR), therefore for the day-time pixels the general form of the 

globally cloudy PDF is given by:  

Eq. 6.8       cyPcyPcP
TIRNIR

o

s
||| y   

For the AATSR example this is: 

Eq. 6.9   
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where P-cloud for the NIR reflectance is determined for the dual-view configuration in a 

similar manner to that outlined above. The full day-time LUT for the NIR reflectance is an 

array of dimensions [28, 100, 100] corresponding to: solar zenith angle, 1.6 µm nadir, and – 

1.6 µm forward. Bin sizes for these dimensions are: 2.5°, 0.01, and 0.01. P-cloud for the 

AATSR day –time reflectance channel is shown in Figure 5 for a solar zenith angle range of 

55° to 57.5°. 

 

 

Figure 5. Example slice of cloudy-sky spectral PDF LUT for 1.6 µm day-time for solar zenith angles in the 

range 55° to 57.5°. 

6.3.3 LSD Distributions 

The joint probability distribution  cP
bo

t
,| xy  of LSD for TIR channels can be determined 

empirically from pre-screened observations (the cloudy scene is too complex to be 

represented analytically). Textural measures are only useful for screening over water surfaces 

where the length of scale of variability can be assumed to be much larger than the pixel scale. 

For SST retrievals this is generally true, except in regions of ocean fronts. For LSWT 
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retrievals however, the length of scale of variability may be shorter and this assumption may 

no longer be adequate. Therefore further assessment of LSD distributions for lakes is 

required. 

For the AATSR example,  cP
bo

t
,| xy  of LSD for 11 m was found empirically from cloudy 

pixels in the full set of AATSR imagery. The probability function estimated is shown in 

Figure 6.   

 

Figure 6. Cloudy-sky 11 µm textural PDF for night-time AATSR. 

6.4 Clear-sky Probability 
6.4.1 Unconditional clear-sky probability -  cP  

The unconditional clear-sky probability is currently set to a globally constant value of 10%, 

i.e. 

  

Eq. 6.10   10.0cP   

Using an existing database of imagery for a given satellite sensor this PDF could be improved 

to allow for the spatial and seasonal variability in clear-sky conditions. From a longer time 

series it will also be possible to allow for climatic patterns such as the El Nino southern 

oscillation (ENSO) and the North Atlantic oscillation (NAO) which both significantly affect 

cloud distributions. However, the influence of this parameter is not dominant, and these 

refinements are not a priority. 

6.4.2 Conditional clear-sky probability -  bo
cP xy ,|  

The conditional clear-sky probability is a measure of the likelihood of a given pixel being 

cloud-free, and is the value returned as part of the SST product. It is calculated using the 

equation:  
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Eq. 6.11  
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where    cPcP  1  

  cP
bo

,| xy  is defined in §6.2 

  cP
bo

,| xy  is defined in §6.3 

6.5  Practical considerations 
The LUTs for all PDFs are stored across two files per instrument: one for clear-sky 

probabilities and the other for cloudy-sky probabilities. These files are in NetCDF format. 

Each file contains the various LUTs along with data defining the dimensions of each LUT. 

Selection of LUTs from these files and the look-up of the LUTs is handled by the ARC-Lake 

processing code, and is dependent on the following factors: channels available, solar zenith 

angle, satellite zenith angle, prior LSWT, and the channel BTs and reflectances. 
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7 ICE IN PIXEL TEST 
The ARC-Lake project also provides observations of lake ice concentration (LIC). This is 

based on the Normalized Difference Snow Index (NDSI) of Hall et al (1995) and is limited to 

daytime observations (as it uses visible reflectance channels). The NDSI is calculated using 

Eq. 7.1  
6.18.0

6.18.0

RR

RR
NDSI




  

Where 8.0
R and 6.1

R are the reflectance observations in the 0.87 µm and 1.6 µm channels 

respectively. Image pixels where NDSI > 0.5 are flagged as ice.   

The NDSI test is only performed on pixels that pass a prior threshold test, based on 

reflectances in the 0.67 µm, 0.87 µm and 1.6 µm channels: 

003.02
6.16.08.0
 RRR  

This threshold test is included to prevent excessive flagging of open-water pixels as ice, and 

is derived empirically from AATSR imagery over oceans. In some cases this test results in 

ice pixels being flagged as open-water (MacCallum and Merchant, 2011b) and therefore an 

underestimation of ice cover in some scenes. 

Coarse cloud screening, performed in advance of this ice test in the retrieval scheme, results 

in some ice pixels being flagged as cloud rather than ice, if the ice is very cold (around -10
o
C 

or colder, depending on the atmospheric conditions). This resulted in an underestimation of 

ice cover in some scenes in v1.0. To reduce the impact of this effect, the ice test is performed 

in advance of the coarse cloud screening in v1.1 onwards. The ice test is also prone to 

occasional false positive flagging ice-clouds as surface ice, with some cloud pixels being 

flagged as ice. In v1.1 onwards the impact of this effect is again reduced, through an 

additional threshold test: observations are only flagged as ice for cases where the prior LSWT 

< 278 K. For ATSR-2 there may also be occasional times when this ice test cannot be 

performed due to erroneous or unpredictable switching from the 1.6 µm to 3.7 µm channel 

(Mutlow et al, 1999). This can happen when reflectances are particularly low (e.g. when the 

surface is in shadow). The more general effect of shading on reflectances and any subsequent 

impact on NDSI is a relevant issue for lakes, due to potential shading effects of topography 

and cloud cover. (For ATSR-1, there is no 0.87 µm channel, and LIC is not generated.) 

The LIC field in the ARC-Lake products then reports the fraction of clear-sky (i.e., not 

flagged as cloudy) lake pixels in the cell in which surface ice was flagged as above. 
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The limitations are thus suspected low hit rate for surface ice (when classed as cloud instead) 

and suspected significant false alarm rate (when ice cloud is classed as surface ice). These 

statements cannot be quantified at time of writing. Future work should involve assessing the 

(mis)classification rate, synthesizing feedback from users regarding the LIC product, 

reviewing the literature for improvements/additions to the scheme and devising or 

implementing such improvements. 
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8 LAKE SURFACE WATER TEMPERATURE 
RETRIEVAL WITH UNCERTAINTY 

Using standard ATSR SST retrieval coefficients for LSWT retrievals is prone, for some 

lakes, to retrieval biases of 0.5 K (Marsham, 2003). (By retrieval bias, we mean the 

systematic offset between satellite and true LSWT that arises from imperfection in the 

retrieval algorithm. Occasional “biases” from failures in cloud detection can be larger.) This 

contrasts with a level of SST retrieval bias for ATSR that is generally <0.2 K. The relatively 

larger potential for bias arises because of the range of lake altitudes, emissivity and the 

continentality of air masses; all these factors change the relationships between BTs and 

surface temperature. One solution could be to specify lake-specific retrieval coefficients. But 

this is not really a scalable solution as we look forward to later phases of the project, where 

more lakes will be tackled. 

The LSWT retrieval is therefore done by optimal estimation (OE). We use a simplified 

formulation of the inverse problem originally developed for SST observations from the 

Advanced Very High Resolution Radiometer (AVHRR) (Merchant et al, 2008) . This 

formulation includes only LSWT and total column water vapour as retrieved (state) variables 

(all though full profile forward modelling is of course used). No radiance bias correction is 

yet derived for ATSR BTs, so the RTTOV8.7-simulated BTs are used “as is” 

8.1  Optimal Estimation (OE) Retrievals 
Optimal Estimation (OE) techniques combine prior information on the expected state of the 

atmosphere and the lake surface with observations to provide an optimal solution of the state 

and an associated uncertainty estimate.  

Prior information, referred to as the prior state vector and denoted a
x , where the “a” subscript 

denotes a priori, consists of: NWP forecast fields, reconstructed lake temperatures derived 

from ARC-Lake observations (§4), and a modelled estimate of emissivity (§5). This a priori 

information is input into a forward model to simulate observations for the prior state, 

 
aa

xFy  . The forward model used in ARC-Lake is RTTOV8.7 (Brunel et al, 2005), which 

provides simulated BTs corresponding to the ATSR channels. Partial derivatives of these 

simulated BTs with respect to state variables are also calculated. These provide an estimate of 

the sensitivity of the prior observations to the state. This sensitivity information is combined 

with the differences between satellite observations, o
y , and prior observations, a

y , to 

estimate the actual state.  

The process is optimal in the sense that it will give an unbiased, minimum SD estimate 

provided the prior information, forward model and error covariance estimates are unbiased 
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(Merchant et al, 2008). Two additional assumptions are also made: the retrieval is assumed to 

be linear within the range of BT corresponding to errors in NWP fields and that only the 

leading two terms controlling BT need be considered. The second of these assumptions leads 

to a reduced state vector,   










w

x
xz , in the retrieval, where x and w are the LSWT and total 

column water vapour respectively. However, the full prior state vector, a
x , is used in the 

forward model. 

The optimal solution is a weighted combination of the prior LSWT and TCWV,  
a

xz , and 

the difference between the observations, o
y , and the BTs simulated for the prior field, 

 
aa

xFy  . Following the methods of Rodgers (1990) and Rodgers (2000), the equation for 

this solution is: 

Eq. 8.1        
ao

T

a

T

a
xFySKSKSKxzz 

 1111
ˆ


 

 where ẑ consists of the retrieved LSWT and TCWV, K is the matrix of partial derivatives of 

observations with respect to the state, 
S is the combined covariance matrix of prior and 

satellite observations, and a
S is the prior covariance matrix of the reduced state vector.  

For day-time ARC-Lake LSWT retrievals these matrices are defined as follows (in Eq. 8.2 to 

Eq. 8.4). For night-time retrievals , the retrieval methodology outlined below is expanded to 

include the 3.7 µm channel. 

 Eq. 8.2 
 
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wyxy

wyxy
a

1 21 2

1 11 1

z

xF
K  

where 
11

y and 
12

y represent the simulated BTs for the 11 µm and 12 µm channels, for the 

prior state, a
x . The tangent linear outputs of the forward model, RTTOV, are used to 

represent K . 

Eq. 8.3  
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
 

where it is assumed that both radiometric noise in the satellite BTs and forward modelling 

errors are uncorrelated between channels (indicated by zero-value off-diagonal terms).  

Radiometric noise is calculated as a function on BT, based on channel NEΔT values at 

calibration black-body temperatures.  
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Eq. 8.4  
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where the zero-value off-diagonal terms indicate that errors in the prior LSWT and TCWV 

are assumed to be independent. The prior uncertainty in LSWT is determined from 

comparisons of retrieved LSWT with in situ observations (§4), while the prior uncertainty in 

TCWV is calculated as a function of TCWV, using coefficients derived from analysis on the 

ARC SST match-up database. 

The expected total random uncertainty in ẑ is represented by the error covariance matrix: 

Eq. 8.5   
111ˆ




a

T
SKSKS

  

which includes the effects of instrumental noise, random forward model error, and errors in 

the prior state. Here, the leading element of Ŝ provides an estimate of the random Gaussian 

variance in the retrieved LSWT from the sources above. Full details of the treatment of 

uncertainties in the LSWT retrieval is given in §8.2. 

8.2 Treatment of Uncertainties 
8.2.1 Introduction 
All LSWT retrievals have an associated uncertainty estimate. Appropriate consideration and 

incorporation of uncertainties from all possible sources is important for any LSWT retrieval 

scheme. Uncertainties are typically split into two broad categories: systematic and random. 

Systematic uncertainties are described in terms of bias and give a measure of the accuracy of 

the retrieval. This is normally estimated by the mean difference between retrieved values and 

“truth” data (e.g. in situ buoy measurements). Random uncertainties are described in terms of 

scatter and provide an estimate of the precision of the retrieval. The standard deviation (SD) 

of the differences between retrieved and “truth” data are commonly used to estimate (or give 

an upper bound on) this uncertainty. Although these basic categorisations may be used to 

provide an overall picture of the errors in a retrieval scheme, error characteristics are in 

reality more complex, as discussed below. 

It should be noted that in ARC-Lake v2.0 products, the uncertainty estimate provided, 

“Err_LSWT” (MacCallum and Merchant, 2011a), is simply an estimate of the variance of 

LSWT observations within each 0.05°x0.05° grid cell. The treatment of errors as discussed in 

the following sections will be implemented in later versions of ARC-Lake products. 

8.2.2 Systematic Errors 
General comment 

Uncertainty distributions for systematic errors are not included in the uncertainty estimates 

associated with LSWTs in the ARC-Lake products. The reason is that systematic errors 
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(biases) are subject to characterisation and reduction by, for example, improved retrieval 

algorithms. Information about biases is given by validation against independent 

measurements. The sections below, however, discuss some forms of systematic errors 

relevant to ARC-Lake, for information.  

Forward modelling errors 

Systematic errors are introduced to the retrieval through the forward model, specified in §8.1, 

that is used to simulate radiances, y , where: 

Eq. 8.6   
F

 bxFy ,  

Here, F represents the function of the RTM, and εF the radiative transfer model error. The 

surface and atmospheric state are described by x, while b incorporates other model 

parameters such as spectroscopic data and sensor characterisation. The RTM error, εF, 

represents the departure of the simulation from what would really be observed by a sensor 

observing the situation described by x and b, but it does not account for errors due to 

systematic differences between state vectors and reality or errors in the model parameters.  

Including these errors, the full forward model error can described as: 

Eq. 8.7  
bxFy

FF


bx 







  

where the subscripts of ε define the parameter in error. As discussed by Merchant and Le 

Borgne (2004), any or all of the terms in Eq. 8.7 can be significant in the context of SST (and 

therefore LSWT) retrievals.  

The forward model error, εy, propagates through into the LSWT retrieval error. Contributions 

to the error from forward model parameters can be isolated by performing identical radiative 

transfer simulations, except for perturbed values of the parameters of interest. Defining yp as 

the BTs simulated after a perturbation, Δb, of parameter, b, of the forward model, the 

resulting error in BT from a parameter error of size Δb can be defined as: 

Eq. 8.8  b
b

F
pab





 yye  

The associated error in LSWT can be determined from the forward model parameter error 

covariance matrix, defined by Rodgers (2000) as: 

Eq. 8.9  
T

y

T

bbbyf
GKSKGS   
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where   1111 



SKSKSKG

T

a

T

y
, is the sensitivity of the retrieval to measurement, 

b

F
K






b
, is the sensitivity of the forward model to the forward model parameters, and 

  
T

b
bbbbS ˆˆ  , is the error covariance matrix of b . 

The model parameters for which error propagation should be evaluated and an example of 

their impact on ATSR-2 coefficient-based SST retrievals are given in Table 4.  

Model Parameter Example Perturbation 
ΔSST retrieval 

Bias (K) ΔSD (%) 

Sea surface emissivity Increase by 0.001 (approximate uncertainty 

estimate for emissivity) 

-0.05 0.4 

Trace gas profiles Change in concentrations from 1999 to 1991 

levels. 

-0.03 0.03 

Water vapour continuum 

parameterization 

Different parameterizations, e.g. CKD 2.2.2 and 

MT_CKD (see http://www.rtweb.aer.com/), as 

appropriate at time of implementation 

0.01 0.08 

Humidity profile Reduce upper-tropospheric humidity by 15% 

(systematic error in UTH of this magnitude in 

NWP profiles is conceivable) 

-0.04 6.8 

Instrument SRF Random changes of to the normalized SRF 

within the SRF uncertainty 

-0.12 4.4 

Table 4. Model parameters (and example perturbations) for which Eq. 8.9 should be evaluated. Example 

perturbations and resulting errors are taken from Merchant and Le Borgne (2004) for SST retreivals. 

Other systematic errors 

There is also a contribution to the overall systematic error from the satellite calibration. The 

contribution from satellite calibration errors must be assessed by propagating calibration 

uncertainties through the OE retrieval scheme.  

Additional errors caused by stratospheric volcanic aerosol may also need to be considered for 

the case of ATSR1. Such errors can be considered as systematic, asymmetric errors. 

Stratospheric volcanic aerosols have life-times longer than synoptic time scales and affect 

regions on up to hemispheric space scales.  

8.2.3 Random Errors (Uncertainty Estimate) 
Symmetric (Gaussian) uncertainties 

http://www.rtweb.aer.com/
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The total uncertainty (Eq 8.5) represents the distribution of three components of error, all of 

which are assumed to be symmetric and Gaussian. These are: instrumental noise, forward 

model “noise” and prior error. This is an accurate description of error propagation for a single 

pixel. However, different components within that total uncertainty differ in their degree of 

correlation between nearby pixels, and therefore differ in how they should be combined when 

forming cell-average LSWT. Briefly, the radiometric component is uncorrelated, and the 

uncertainty reduces with “1/n”, whereas the other components are highly correlated, and the 

best approximation is to assume no average with respect to the number of pixels within the 

cell. These comments are expanded below. 

Radiometric (instrumental) noise 

The radiometric noise in the sensors depends on the scene radiance (or BT) and the 

temperature of the detector. Radiometric noise expressed as a noise equivalent differential 

temperature is available to the LSWT retrieval within the processing chain. 

The radiometric noise propagates through the LSWT retrieval via the covariance matrix, 
S , 

defined in Eq, 6.5, where the contribution from radiometric noise is denoted, o
S  . An overall 

estimate of the radiometric noise in the retrieval can be obtained using 

Eq. 8.10a    
1111111 


a

T

o

T

a

T

m
SKSKKSKSKSKS

  

The radiometric uncertainty in LSWT, rad, is then the square root of the error variance for 

LSWT, which is the leading term of Sm 

Pseudo-random uncertainty 

The forward model may have systematic errors, as discussed earlier, but even after correction 

of these, a distribution of forward modelling errors would remain. We treat these as random 

to reflect our ignorance, although, of course, for a given NWP profile, the forward model 

error is (on a given computer) fixed (although unknown). This means that the forward model 

component of error is highly correlated between nearby pixels in an image, since the same 

simulations on the NWP profiles have been interpolated to the pixel. In this sense, the 

forward model uncertainty is pseudo-random rather than truly random.  

In addition the prior error is also highly correlated for nearby pixels within a cell, again 

because the prior information is defined either at tie points or for 0.05
o
 cells – i.e., varies 

slowly between adjacent pixels.  

Thus, the total “pseudo-random” uncertainty is defined by the error covariance matrix: 

Eq. 8.10b 



S
PR  sym

 K
T
S


1
K  S

a

1

 
1

K
T
S
r

1
K  S

a

1

  K
T
S


1
K  S

a

1

 
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The pseudo-random uncertainty in LSWT, PR-sym, is then the square root of the error variance 

for LSWT, which is the leading term of SPR-sym. 

 

Pseudo-random – asymmetric 

Another source of pseudo-random error in the LSWT retrievals takes the form of cloud (and 

perhaps aerosol) contamination in the channel brightness temperatures. This contamination 

may be a result of either residual cloud in view or reflections from clouds (in the along-track 

view). The contribution to the overall retrieval error from this source may be determined 

empirically through comparisons of retrieved LSWTs (LSWTret) with in-situ observations 

(LSWTbuoy) for different levels of cloud cover in neighbouring pixels. Comparison of the 

root-mean-square deviation (RMSD) of the LSWT difference (ΔLSWT = LSWTret-

LSWTbuoy), between clear-sky conditions and cases with differing numbers of adjacent 

cloudy pixels, yields an estimate of the error contribution as a function of cloud cover in 

adjacent pixels. The asymmetric component of the pseudo-random uncertainty is termed,
 

asymPR 
  .  

The form of the contribution is cloud-detection and retrieval dependent, and can only be 

obtained empirically using validation matches. This form of uncertainty is likely to be 

modified when cloud detection and/or retrieval algorithm are changed. Thus, although it has 

been assessed for AATSR SST, use of SST-based parameters is therefore not ideal, and this 

should be re-appraised for lakes using the OE retrieval scheme. A practical difficulty will be 

that there are greatly fewer matches to validation data for lakes than for SSTs. 

Please note, for the reasons above this source of error is described for information purposes 

only and is not accounted for in ARC-Lake v2.0 products. It is not presently clear how and 

when this uncertainty component will be included. 

Thus, for ARC-Lake v2.0, the assumption is “perfect cloud detection”, and asymPR 
 = 0. 

Combining random errors 

Ideally, the (pseudo) random errors discussed in §8.2.3 are combined to provide an overall 

estimate of the retrieval error using (treating the asymmetric error as if it were zero mean, 

which is a conservative assumption):  

Eq. 8.11 




total  random

 
rad

2
 

PR  sym

2
 

PR  asym

2  
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This is the pixel level uncertainty estimate associated with LSWT for each pixel at full 

resolution. It is consistent with Eq 8.5. The propagation of pixel level uncertainty into the 

uncertainty associated with a cell average is described in Section 9. 

In the ARC-Lake v2.0 products, these errors are not accounted for in the returned error 

estimate. Radiometric noise and the symmetric component of the pseudo-random uncertainty 

(
rad

  and 
symPR 

  ) will be introduced by ARC-Lake v3.0. 

8.2.4 Other Errors 
Other sources of error could also be considered. Incorrect cloud screening (as opposed to 

undetectable residual cloud contamination characterized as pseudo-random asymmetric error) 

is one example of such errors. Such errors are occasional and erratic, and cannot be naturally 

included in the uncertainty estimates. The limitations of the cloud screening method used and 

the potential errors therefore should be appreciated by users, who can implement quality 

control or other measures appropriate to their application. Sampling errors may arise from 

valid clear-sky scenes being flagged as cloudy. This is more likely to eliminate cold than 

warm features in LSWT. In doing so, warm sampling biases may be introduced into averaged 

LSWT products.  

Another source of sampling error arises from the nature of the ERS/Envisat orbit and swath. 

As a sun-synchronous polar orbiting satellite, observations are made at a fixed local time on 

each overpass. Consequently diurnal variations in LSWT cannot be fully captured and diurnal 

variations in cloud cover may result in consistently low LSWT coverage for some regions. 

However, this class of “errors” is of a different type to the error estimated with Eq. 8.11, 

which is an appropriate uncertainty estimate for the LSWT taken for what it is: an 

observation of LSWT at a particular location and instant. 

Sampling errors within areas must be considered when creating and analysing spatially and 

temporally averaged LSWT products, as in the following section 9. 

 

8.2.5  Confidence Indicators 
In addition to the uncertainty information described in §8.2 a further diagnostic on the 

retrieval is provided in the form of the χ
2
 statistic. This provides quantitative measure of the 

consistency of the retrieval with the satellite observations. The forward model is evaluated for 

the retrieved state ( 










̂

ˆ
ˆ

x
z ) and these simulated BTs compared with the satellite BTs for 

consistency. The expression used to quantify this is given by Rodgers (2000) as: 

Eq. 8.12       yzKSSKKSSyzK 


ˆˆˆ
112




T

a

T
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where  
a

xFyy   and a
zzz  ˆˆ . Eq. 8.12 returns a single number as a statistic for each 

pixel. Provided the OE retrieval is unbiased and errors in the priors and observations are 

Gaussian and correctly represented in the covariance matrices, the distribution of 
2

̂ should 

be a 
2

̂  distribution with n degrees of freedom (where n corresponds to the number of 

channels used in the retrieval). A demonstration of the practical usefulness of the 
2

̂  statistic 

for a twin-channel retrieval is given by Merchant et al (2008). Thus, the 
2

̂  statistic could be 

interpreted by users as a basis for a confidence indicator akin to the concept used in the SST 

community (Group for High Resolution SST, GDS 2.0, 2010). At present, the statistic is 

present, but conversion to a confidence indicator is not provided in ARC-Lake products. If 

user demand is established for a GHRSST-style indicator (e.g., in order to convert products to 

GHRSST GDS2.0 format), this could be considered in future work. 
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9 GRIDDING 
Spatially and temporally averaged LSWT products are generated for each LSWT retrieval 

type independently. Averaging is performed using the retrieved LSWT values on the ATSR 

footprint scale (rather than calculating LSWTs from averaged channel BTs). Only pixels with 

valid LSWT retrievals for the specific retrieval type are used to produce the averaged LSWT 

product for that retrieval type, using Eq. 9.1 

Eq. 9.1  
 






lk

lklk

ji
G

STLakeG
STLake

,

,,

,

_
_  

Here i,j represent the coordinates of the cell in the averaged product, k,l represent the pixel 

coordinates within the cell of dimension N. Gk,l is a cloud-screening operator that takes a 

value of  

 0 when the pixel, k,l is cloudy in any of the views used for the current retrieval type 

 1 when the pixel is cloud-free.  

Eq. 9.1 is be used to calculate averaged LSWT products for each retrieval scheme 

independently. Single-view LSWTs for a given cell may be based on a different sample from 

any dual-view LSWT for that cell, if the cloud mask for the along-track view differs from the 

across-track view (which in general it does).  

The error estimate associated with LSWTi,j needs to take into account the distinction between 

random and pseudo-random error, and uncertainty from sub-sampling within the grid cell. It 

is assumed that radiometric errors are completely uncorrelated between pixels in the cell (true 

except for cosmetic fill pixels), while PR errors are assumed correlated across the cell (and 

therefore not reduced by averaging over pixels). The appropriate error estimate is therefore 

Eq. 9.2
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where the first two terms on the right follow directly by analogy with Eq. 9.1 under the 

assumptions about correlations of errors with the cells. The final term represents the 

uncertainty in the cell average from sub-sampling, i.e., from the fact that LSWTs under cloud 
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pixels are not included, and the unknown LSWTs for these pixels are therefore excluded from 

the cell average. It has the form of an estimate (indicated by the hat symbol) of the true 

variance of LSWT in the cell, VLSWT,i,j, scaled by a fraction related to the proportion of the N 

pixels within the cell boundary that are included in the cell LSWT average. The justification 

for this model of sampling error is straight-forward: if only one pixel contributes to the cell 

average LSWT, the uncertainty from this sampling effect is the full variance of LSWT in the 

cell (as perceived at the ATSR spatial resolution); if all pixels are clear, the sampling 

uncertainty is zero. The problem is then to find an estimate of VLSWT,i,j. The options are (i) try 

to estimate it from the observed data, or (ii) define an external reference (from a climatology 

of variability at an appropriate resolution for the grid-cells required). Where the grid cell is 

relatively completely observed, (i) is clearly preferable; however, if relatively few or one 

pixels are clear within the cell, such an estimate of VLSWT,i,j becomes highly uncertain or 

undefined. The second option is complex to define, being a function of observation 

resolution, grid cell size, location and seasonality. In the equation above, the option (i) is 

therefore assumed and the expression for the variance estimate is given. However, for the 

case where the number of clear pixels is 1 (variance undefined) or less than a fraction fmin of 

the cell (for which the variance estimate is particularly unreliable in the face of spatial 

correlations within the cell area), a minimum value, Vmin is imposed Vmin = 0.1
2
 K

2
 and fmin = 

0.2). These parameters are based on judgment (not formally optimized) and are subject to 

refinement. 

As discussed in §8, ARC-Lake v2.0 products provide only an estimate of the variance of 

LSWT across the cell, and therefore do not implement Eq. 9.2 for the error estimate. Eq. 9.2 

will hold for subsequent versions of ARC-Lake products, with 
asymPR 

  = 0, as discussed in 

§8.23. It should also be noted that the methods described above to account for uncertainty in 

the cell average from sub-sampling are not implemented in ARC-Lake v2.0 products, but will 

again be implemented in subsequent versions. 
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10 ATSR-1 Modifications 
A number of modifications to the processing scheme are implemented for ATSR-1 to account 

for instrument differences and the effect of aerosols from the Pinatubo eruption in 1991. 

Some of these have already been described in earlier sections but are summarized here, along 

with more in depth detail of further ATSR-1 specific modifications. 

 

The lack of visible observing channels results in no ice detection (§7) being performed for 

ATSR-1. As a consequence, modifications are made to the v2.0 methods used for generating 

the prior LSWT field (§4.2): ice climatology from ATSR-2/AATSR is substituted into 

ATSR-1 observations prior to generation of the prior LSWT for the next iteration, and 

ATSR-2/AATSR climatology is used in preference to FLake simulations and ATSR-1 

climatology-based reconstructions.  

 

In addition to modifications already described, two further ATSR-1 specific modifications 

are implemented: one to correct for variations in the 12µm detector temperature and another 

to account for volcanic aerosol from the Pinatubo eruption in 1991. 

 

Problems with the ATSR-1 cooler resulted in the detector temperature being allowed to rise 

gradually over the ATSR-1 lifetime. This warming affects all detectors with the 12 µm 

channel most significantly affected (Mutlow et al, 1999). The detector warming impacts on 

the 12 µm channel in two ways: the radiance to BT conversion is biased due to using the 

wrong calibration, and the 12 µm channel response is shifted, modifying the long-wave filter 

cut-off, and subsequently affecting retrieved LSWTs. The first of these effects is small (<0.01 

K) and is corrected for by adjusting the 12 µm BT using a quadratic fit with dependence on 

detector temperature. The second of these effects is accounted for through adjustment of the 

modeled 12 µm BT. RTTOV 12 µm BTs are calculated using RTTOV coefficients 

representing three detector temperatures (85 K, 97.5 K, and 110 K), and the modeled 12 µm 

BT for the detector temperature at time of observation derived through linear interpolation of 

these values. 

 

The eruption of Pinatubo in 1991 resulted in a period of increased aerosol loading in the 

atmosphere, affecting ATSR-1 BTs. Provided the effects of aerosol are accounted for in the 

forward model, the performance of the OE retrieval scheme and Bayesian cloud screening are 

expected to be maintained. Modelled BTs are adjusted by a time, latitude, and satellite zenith 

angle dependent factor determined from line-by-line model simulations and SST observations 

from the ARC project over the ATSR-1 lifetime. A latitude and time dependent look-up-table 

of aerosol index (a measure of the aerosol loading) is estimated from the difference between 

aerosol robust dual-view and nadir-view SST retrievals. A satellite zenith angle dependent 

look-up-table of aerosol mode (the change in BT due to the aerosol) is estimated from  

line-by-line simulations RFM (http://www.atm.ox.ac.uk/RFM/) / DISORT (Stamnes et al, 

1988) and is combined with the time/latitude varying look-up-table for aerosol index to 

provide an adjustment factor for the RTTOV modeled BTs. 

 

 

http://www.atm.ox.ac.uk/RFM/
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11 Other Sources of Information 
This document describes the theoretical basis for the practical implementation of the ARC-

Lake processor for generating Lake Surface Water Temperature (LSWT) and Lake Ice 

Concentration (LIC) products from Along-Track Scanning Radiometer (ATSR) imagery. 

Details of other sources of information associated with the generation and validation of these 

products are given in this section. 

An outline of the selection process used to identify the target lakes for ARC-Lake is given in 

the ARC-Lake Technical Note on lake definition (MacCallum and Merchant, 2010).  

The results of validation studies for the v1.2 LSWT and LIC products are given in the ARC-

Lake Validation Report (MacCallum and Merchant 2011b).  

The ARC-Lake v2.0 product file format is described in MacCallum and Merchant, (2011a). 

This document and the v2.0 data files are available for download from 

http://hdl.handle.net/10283/88. Additional information can be found on the ARC-Lake 

project website, http://www.geos.ed.ac.uk/arclake.  Earlier v1.1 data files and associated 

documentation are available from http://hdl.handle.net/10283/88.  

Further details of the Generalised Bayesian Cloud Screening (GBCS) methods on which are 

available from the GBCS website, http://www.geos.ed.ac.uk/gbcs. Bayesian cloud screening 

is also described in detail in Merchant et al (2005). 

Useful information on the series of ATSR instruments is available from the following 

websites:  

 http://earth.esa.int/ers/atsr 

 http://www.atsr.rl.ac.uk 

The radiative transfer model, RTTOV, is described in Brunel et al (2005). Additional 

information on RTTOV is available from: 

http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/ 

The lake model, FLake, (Mironov, 2005) is available online at:  

http://www.flake.igb-berlin.de/ 

DINEOF, the software used to generate reconstructed temperature time series using principal 

component techniques, is described in Alvera-Azcárate (2005). Additional information is 

available from the DINEOF website: 

http://modb.oce.ulg.ac.be/mediawiki/index.php/DINEOF 

http://hdl.handle.net/10283/88
http://www.geos.ed.ac.uk/arclake
http://hdl.handle.net/10283/88
http://www.geos.ed.ac.uk/gbcs
http://earth.esa.int/ers/atsr
http://www.atsr.rl.ac.uk/
http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/
http://www.flake.igb-berlin.de/
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13  Appendix 
13.1 Sources of data for prior LSWT field 
ID Name Lon. Lat. ATSR-1 ATSR-2 AATSR 

T C M F T C M F T C M F 

166 ABAYA 37.83 6.30   Y    Y    Y  

527 ABE 41.79 11.17 Y    Y    Y    

152 ABERDEEN -98.59 64.55  Y     Y    Y  

418 ABY -3.23 5.23  Y     Y  Y    

58 ALAKOL 81.75 46.11   Y  Y    Y    

30 ALBERT 30.91 1.67 Y    Y    Y    

210 ALEXANDRINA 139.09 -35.52 Y    Y    Y    

1748 ALMANOR -121.19 40.26  Y   Y      Y  

56 AMADJUAK -71.13 64.99  Y     Y    Y  

354 ANG-LA JEN 83.09 31.53  Y     Y  Y    

324 ANGIKUNI -100.04 62.27  Y    Y    Y   

4 ARAL 60.08 45.13  Y    Y    Y   

117 ARGENTINO -73.03 -50.33 Y    Y    Y    

334 ARTILLERY -107.82 63.17  Y     Y    Y  

345 ASHUANIPI -66.14 52.69  Y     Y    Y  

115 ASTRAY -66.32 54.38  Y    Y    Y   

23 ATHABASCA -109.96 59.10 Y    Y    Y    

311 ATLIN -133.75 59.57  Y   Y      Y  

312 AYAKKUM 89.35 37.55 Y    Y    Y    

226 AYLMER -108.46 64.15  Y     Y    Y  

181 BAGHRASH 87.07 41.98   Y  Y    Y    

8 BAIKAL 108.14 53.63 Y    Y    Y    

97 BAKER -95.28 64.13  Y     Y    Y  

310 BALATON 17.83 46.88 Y    Y    Y    

17 BALKHASH 73.95 45.91 Y    Y    Y    

536 BANGONG 79.71 33.61  Y   Y    Y    

229 BARUN-TOREY 115.81 50.07 Y    Y    Y    

205 BAY 121.26 14.36 Y    Y    Y    

145 BECHAROF -156.40 57.85 Y    Y    Y    

160 BELOYE 37.64 60.18 Y    Y    Y    

267 BEYSEHIR 31.52 37.78 Y    Y    Y    

155 BIENVILLE -72.98 55.05  Y    Y     Y  

280 BIG TROUT -90.02 53.77  Y   Y    Y    

268 BIWA 136.08 35.25   Y  Y    Y    

333 BLACK -105.73 59.05  Y   Y    Y    

191 BRAS D'OR -60.83 45.95   Y  Y    Y    

94 BUENOS AIRES -72.50 -46.66 Y    Y    Y    

299 BUFFALO -115.49 60.22   Y  Y    Y    

291 BUYR 117.69 47.81 Y    Y    Y    

257 CARATASCA -83.85 15.35 Y    Y    Y    

1 CASPIAN 50.36 41.85 Y    Y    Y    

265 CAXUANA -51.50 -2.04   Y  Y      Y  

57 CEDAR -100.14 53.33 Y    Y    Y    

165 CHAMPLAIN -73.27 44.45  Y     Y  Y    

233 CHAO 117.57 31.57 Y    Y    Y    

153 CHAPALA -103.05 20.21 Y    Y    Y    

204 CHILKA 85.38 19.69 Y    Y    Y    
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256 CHILWA 35.71 -15.32 Y    Y    Y    

84 CHIQUITA -62.61 -30.74 Y    Y    Y    

119 CHISHI 29.72 -8.71 Y    Y    Y    

323 CHURCHILL -108.29 55.96   Y  Y    Y    

125 CLAIRE -112.08 58.59 Y    Y    Y    

1188 CLEAR -122.77 39.02   Y  Y    Y    

275 CLINTON COLDEN -107.45 63.94  Y   Y    Y    

277 COARI -63.37 -4.25  Y   Y    Y    

219 COLHUE HUAPI -68.76 -45.47 Y      Y  Y    

352 CONSTANCE 9.28 47.65   Y  Y    Y    

162 CONTWOYTO -110.66 65.59  Y     Y    Y  

284 CORO -69.86 11.56 Y    Y    Y    

137 CREE -106.64 57.47  Y     Y  Y    

251 CROSS -97.58 54.71  Y    Y    Y   

351 DAUPHIN -99.77 51.27 Y    Y    Y    

244 DEAD 35.49 31.52 Y    Y    Y    

326 DESCHAMBAULT -103.45 54.78   Y  Y    Y    

281 DORE -107.28 54.76   Y  Y    Y    

49 DUBAWNT -101.44 63.13  Y   Y    Y    

128 EAU CLAIRE -74.40 56.15  Y   Y    Y    

297 EBI 82.92 44.86  Y   Y    Y    

305 EBRIE -4.26 5.30  Y    Y    Y   

69 EDWARD 29.61 -0.39 Y    Y    Y    

390 EGRIDIR 30.85 38.07 Y    Y    Y    

254 ENNADAI -101.31 60.96  Y     Y    Y  

723 ENRIQUILLO -71.58 18.49 Y    Y    Y    

12 ERIE -81.16 42.25 Y    Y    Y    

149 ESKIMO -132.76 69.10  Y     Y    Y  

270 EVANS -77.02 50.97  Y     Y    Y  

1029 EVORON 136.51 51.48  Y   Y      Y  

156 EYASI 35.04 -3.58  Y   Y     Y   

304 FAGNANO -68.03 -54.55  Y   Y    Y    

315 FERGUSON -105.27 69.41  Y   Y    Y    

404 FROBISHER -108.22 56.37  Y      Y  Y   

227 GARRY -99.40 65.95  Y     Y    Y  

327 GENEVA 6.25 46.37 Y    Y    Y    

172 GODS -94.21 54.62  Y   Y    Y    

363 GRANVILLE -100.21 56.40  Y    Y     Y  

252 GRAS -110.38 64.54  Y     Y    Y  

9 GREAT BEAR -121.30 65.91   Y    Y  Y    

11 GREAT SLAVE -114.37 62.09   Y  Y    Y    

253 GUILLAUME-
DELISLE 

-76.28 56.33  Y     Y  Y    

294 HAR 93.21 48.05 Y    Y    Y    

142 HAR US 92.30 48.06 Y    Y    Y    

302 HAR-HU 97.59 38.31 Y    Y    Y    

214 HAUKIVESI 28.52 62.10  Y    Y     Y  

339 HAZEN -70.94 81.80    Y    Y    Y 

288 HIGHROCK -100.44 55.83    Y    Y    Y 

189 HOTTAH -118.44 64.95  Y     Y    Y  

59 HOVSGOL 100.48 51.02   Y  Y      Y  

75 HULUN 117.38 48.97 Y    Y    Y    

109 HUNGTZE 118.53 33.34 Y    Y    Y    
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5 HURON -82.21 44.78 Y    Y    Y    

121 HYARGAS 93.30 49.13 Y    Y    Y    

62 ILIAMNA -154.90 59.56 Y    Y    Y    

144 INARI 27.83 69.04  Y     Y    Y  

293 INDIAN RIVER -80.64 28.24  Y     Y  Y    

174 ISLAND -94.70 53.85  Y    Y     Y  

25 ISSYKKUL 77.25 42.46   Y  Y    Y    

1441 ISTADA 67.92 32.48   Y   Y    Y   

245 IZABAL -89.11 15.57   Y  Y    Y    

141 KAGHASUK -164.22 60.79  Y   Y    Y    

246 KAMINAK -94.90 62.20  Y    Y     Y  

320 KAMINURIAK -95.79 62.96  Y     Y    Y  

264 KAMlLUKUAK -101.73 62.28  Y     Y    Y  

287 KAOYU 119.31 32.87 Y    Y    Y    

197 KARA-BOGAZ-
GOL 

53.54 41.23 Y    Y    Y    

124 KASBA -102.27 60.34  Y   Y    Y    

346 KEITELE 25.99 62.89  Y    Y     Y  

45 KHANKA 132.42 44.94 Y    Y    Y    

218 KHANTAYSKOE 91.18 68.36  Y     Y    Y  

67 KIVU 29.23 -2.04   Y  Y    Y    

41 KOKO 100.18 36.89 Y    Y    Y    

344 KRASNOE 174.44 64.53  Y   Y    Y    

262 KULUNDINSKOE 79.58 52.98 Y    Y    Y    

325 KWANIA 32.65 1.72  Y     Y  Y    

382 KYARING 88.32 31.13   Y  Y    Y    

99 KYOGA 33.01 1.50   Y  Y    Y    

331 LABAZ 99.57 72.27  Y   Y     Y   

16 LADOGA 31.39 60.84 Y    Y    Y    

147 LESSER SLAVE -115.49 55.43 Y    Y    Y    

140 LIMFJORDEN 9.17 56.78 Y    Y    Y    

209 LLANQUIHUE -72.79 -41.14 Y    Y    Y    

357 LOWER SEAL -73.42 56.49    Y    Y    Y 

175 LUANG 100.38 7.46  Y   Y    Y    

184 MACKAY -111.30 63.96  Y     Y    Y  

101 MADRE -97.66 24.64 Y    Y    Y    

163 MALAREN 16.19 59.44  Y     Y    Y  

350 MALHEUR -118.83 43.34  Y     Y   Y   

176 MANAGUA -86.35 12.32 Y    Y    Y    

231 MANGUEIRA -52.84 -33.16 Y    Y    Y    

37 MANITOBA -98.80 50.99 Y    Y    Y    

368 MANOUANE -70.99 50.76  Y    Y     Y  

250 MANYCH-GUDILO 42.98 46.26 Y    Y    Y    

100 MARTRE -117.91 63.33 Y    Y    Y    

6 MICHIGAN -87.09 43.86 Y    Y    Y    

366 MILLE LACS -93.65 46.24 Y    Y    Y    

224 MINTO -74.71 57.34    Y    Y    Y 

46 MIRIM -53.25 -32.89 Y    Y    Y    

76 MISTASSINI -73.81 50.82  Y     Y  Y    

883 MONO -118.96 38.01   Y  Y      Y  

286 MURRAY 141.53 -6.95  Y    Y    Y   

36 MWERU 28.74 -9.01 Y    Y    Y    

343 NAHUEL HUAPI -71.52 -40.92 Y    Y    Y    
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377 NAKNEK -155.67 58.64  Y     Y  Y    

91 NAM 90.66 30.71 Y    Y    Y    

322 NATRON 36.02 -2.34  Y     Y    Y  

338 NERPICH'YE 162.77 56.39  Y   Y    Y    

32 NETILLING -70.28 66.42  Y     Y    Y  

300 NGORING 97.71 34.93 Y    Y    Y    

21 NICARAGUA -85.36 11.57 Y    Y    Y    

38 NIPIGON -88.55 49.80  Y   Y    Y    

198 NIPISSING -79.92 46.24 Y    Y    Y    

211 NONACHO -108.92 61.82  Y    Y     Y  

303 NORTH MOOSE -100.16 54.05   Y  Y    Y    

83 NUELTIN -99.40 60.25  Y     Y    Y  

10 NYASA 34.59 -11.96 Y    Y    Y    

114 OKEECIIOBEE -80.86 26.95 Y    Y    Y    

336 OLING 97.27 34.92 Y    Y    Y    

207 OMULAKH 145.59 72.29  Y    Y   Y    

18 ONEGA 35.35 61.90 Y    Y    Y    

15 ONTARIO -77.77 43.85 Y    Y    Y    

187 ORIVESI 29.59 62.35  Y   Y      Y  

157 PAIJANNE 25.49 61.71  Y     Y  Y    

697 PANGONG 78.61 33.82  Y    Y     Y  

353 PAYNE -73.82 59.40  Y    Y     Y  

50 PEIPUS 27.59 58.41 Y    Y    Y    

349 PERLAS -83.67 12.54   Y  Y    Y    

222 PETER POND -108.55 55.84   Y  Y    Y    

195 PIELINEN 29.71 63.16  Y     Y    Y  

213 PLAYGREEN -97.75 54.07  Y   Y    Y    

232 POINT -113.84 65.31  Y    Y    Y   

649 POMO 90.40 28.55  Y     Y    Y  

133 POOPO -67.06 -18.81  Y    Y   Y    

395 PRINCESS MARY -97.66 63.93  Y     Y    Y  

164 PURUVESI 29.02 61.77  Y    Y     Y  

273 PYA 30.98 66.07  Y     Y    Y  

240 PYASINO 87.78 69.77  Y   Y    Y    

1240 PYHAJARVI 22.28 61.00  Y   Y    Y    

411 PYRAMID -119.55 40.03 Y    Y    Y    

130 RAINY -92.97 48.61  Y     Y    Y  

358 RAZELM 28.97 44.83 Y    Y    Y    

151 RED -95.08 48.04 Y    Y    Y    

28 REINDEER -102.27 57.19  Y   Y    Y    

321 ROGOAGUADO -65.73 -12.91  Y     Y  Y    

127 RONGE -104.83 55.11  Y   Y    Y    

22 RUDOLF 36.08 3.53 Y    Y    Y    

146 SAINT CLAIR -82.73 42.50 Y    Y    Y    

158 SAINT JEAN -72.02 48.66   Y  Y    Y    

285 SAINT JOSEPH -90.81 51.04  Y     Y    Y  

282 SAKAMI -76.75 53.22  Y     Y    Y  

194 SALTON -115.83 33.30 Y    Y    Y    

167 SAN MARTIN -72.84 -48.75  Y   Y    Y    

356 SANDY -93.03 53.00  Y     Y    Y  

241 SARYKAMYSHSK
OYE 

57.61 41.88 Y    Y    Y    

247 SASYKKOL 80.91 46.58   Y  Y    Y    
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313 SCOTT -106.07 60.02  Y    Y    Y   

228 SEG 33.76 63.32  Y   Y    Y    

170 SELAWIK -160.73 66.51   Y    Y  Y    

271 SELETYTENIZ 73.18 53.23   Y    Y  Y    

292 SELWYN -104.68 60.00  Y    Y     Y  

135 SEVAN 45.29 40.39 Y    Y    Y    

579 SHAMO 37.55 5.83   Y    Y    Y  

143 SHERMAN -97.73 67.79  Y     Y    Y  

236 SIMCOE -79.42 44.47 Y    Y    Y    

27 SMALLWOOD -64.31 54.19  Y   Y    Y    

365 SNOWBIRD -102.94 60.64  Y   Y    Y    

319 SOUTH HENIK -97.29 61.37  Y     Y    Y  

225 SOUTH MOOSE -100.04 53.83   Y  Y    Y    

2 SUPERIOR -88.23 47.72 Y    Y    Y    

85 SYVASH 34.74 45.96   Y  Y    Y    

380 TAHOE -120.04 39.09 Y    Y    Y    

66 TAI 120.24 31.21 Y    Y    Y    

178 TAKIYUAK -113.17 66.28  Y     Y    Y  

235 TAMIAHUA -97.57 21.66 Y    Y    Y    

55 TANA 37.31 11.95 Y    Y    Y    

7 TANGANYIKA 29.46 -6.07 Y    Y    Y    

215 TANGRA 86.59 31.05 Y    Y    Y    

73 TAPAJOS -55.14 -2.88 Y    Y    Y    

316 TATHLINA -117.64 60.54 Y    Y    Y    

295 TAUPO 175.90 -38.81 Y    Y    Y    

43 TAYMYR 100.76 74.48  Y    Y    Y   

373 TEBESJUAK -98.98 63.76  Y     Y    Y  

120 TENGIZ 68.90 50.44 Y    Y    Y    

179 TERINAM 85.61 30.90 Y    Y    Y    

212 TESHEKPUK -153.60 70.59  Y   Y    Y    

20 TITICACA -69.30 -15.92 Y    Y    Y    

150 TOBA 98.90 2.61  Y     Y    Y  

186 TOP 32.09 65.62  Y     Y    Y  

332 TOWUTI 121.52 -2.79   Y    Y    Y  

367 TROUT -121.13 60.58 Y    Y    Y    

269 TULEMALU -99.48 62.99  Y   Y      Y  

255 TUMBA 17.98 -0.82  Y     Y  Y    

425 UBINSKOE 80.05 55.47 Y    Y    Y    

239 ULUNGUR 87.30 47.22 Y    Y    Y    

314 UPEMBA 26.40 -8.65 Y    Y    Y    

53 UVS 92.81 50.33 Y    Y    Y    

51 VAN 42.98 38.66 Y    Y    Y    

29 VANERN 13.22 58.88 Y    Y    Y    

95 VATTERN 14.57 58.33 Y    Y    Y    

1820 VESIJARVI 25.39 61.09  Y    Y     Y  

3 VICTORIA 33.23 -1.30 Y    Y    Y    

171 VIEDMA -72.56 -49.59 Y    Y    Y    

136 VYG 34.84 63.54  Y   Y    Y    

1128 WALKER -118.71 38.70   Y  Y    Y    

876 WEISHAN 117.24 34.61 Y    Y    Y    

169 WHOLDAIA -104.15 60.69  Y    Y    Y   

340 WINNEBAGO -88.42 44.02 Y    Y    Y    

13 WINNIPEG -97.25 52.12 Y    Y    Y    
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31 WINNIPEGOSIS -100.05 52.37 Y    Y    Y    

68 WOLLASTON -103.33 58.30  Y   Y    Y    

44 WOODS -94.91 49.38 Y    Y    Y    

134 XINGU -52.20 -2.16 Y    Y    Y    

261 YAMDROK 90.76 28.97  Y    Y    Y   

126 YATHKYED -98.07 62.69  Y     Y  Y    

105 ZILING 88.95 31.77 Y    Y    Y    
Table 5. Breakdown of sources of data for the prior LSWT field (§4)  


